首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hallmark of anoxia tolerance in western painted turtles is relative constancy of tissue adenylate concentrations during periods of oxygen limitation. During anoxia heart and brain intracellular compartments become more acidic and cellular energy demands are met by anaerobic glycolysis. Because changes in adenylates and pH during anoxic stress could represent important signals triggering metabolic and ion channel down-regulation we measured PCr, ATP and intracellular pH in turtle brain sheets throughout a 3-h anoxic-re-oxygenation transition with 31P NMR. Within 30 min of anoxia, PCr levels decrease 40% and remain at this level during anoxia. A different profile is observed for ATP, with a statistically significant decrease of 23% occurring gradually during 110 min of anoxic perfusion. Intracellular pH decreases significantly with the onset of anoxia, from 7.2 to 6.6 within 50 min. Upon re-oxygenation PCr, ATP and intracellular pH recover to pre-anoxic levels within 60 min. This is the first demonstration of a sustained reversible decrease in ATP levels with anoxia in turtle brain. The observed changes in pH and adenylates, and a probable concomitant increase in adenosine, may represent important metabolic signals during anoxia.  相似文献   

2.
The effects of anoxia on function and survival of different central nervous system (CNS) areas were tested. As expected, synaptic function in a typical gray matter area of the brain, hippocampus, failed rapidly during 30 min of anoxia and did not recover. Mouse optic nerve and corpus callosum, two white matter (WM) areas of the brain, showed persistent function during total anoxia for periods as long as two hours. Moreover, even after two hours of anoxia followed by a recovery period, nearly half of the axons that were excitable at the outset remained functional. The corpus callosum contains a high percentage of unmyelinated axons while optic nerve axons are completely myelinated. These studies indicate that CNS structures vary greatly in their ability to function and survive anoxia. Mammalian WM, independent of myelination, is remarkably tolerant of anoxia implying that CNS axons generate enough ATP by anaerobic energy metabolism to sustain function.Special issue dedicated to Lawrence F. Eng.  相似文献   

3.
Effect of the cessation of oxygen supply on cAMP content and neuronal spike activity (NSA) in the cortex brain was studied. The interruption of oxygen supply during in first decades of seconds evoked changes in the pattern of NSA, followed with the decrease of cAMP content (to 56 +/- 10%). Then the phase of neuronal hyperactivity and increase of cAMP level (to 198 +/- 26%) took place. The content of cAMP approximated the basal one in 2.5 min anoxia. Anoxia during 5 min resulted in direct opposite shifts of cAMP content in two groups of cats (an increase up to 223 +/- 11%, and decrease up to 75 +/- 8%, respectively, which correlated with individual features of NSA recovery in postanoxic period and values of cAMP basal level in the cortex of different animals. Upon 30 min reoxygenation after 2.5 min anoxia a decline of the content of cAMP (to 63 +/- 12%) accompanied enhance of NSA. This period of reoxygenation after 5 min anoxia demonstrated two types of reactions, observed in different groups of cats: the first type--NSA tended to normalization with the level of cAMP 44 +/- 8% below basal level, and the second type--insufficient recovery of NSA attended by value of cAMP 90 +/- 13% above basal level.  相似文献   

4.
Glycogen Metabolism in Neonatal Rat Brain During Anoxia and Recovery   总被引:2,自引:1,他引:1  
Abstract: Metabolic alterations in glycogen and in glycogen-related metabo lites were studied in neonatal rat brain during controlled anoxia and recovery. One-day postnatal rats were exposed to 100% N, at 37°C for up to 20 min; some rats were allowed to recover in air. Animals were frozen in liquid N, and the brains were prepared for fluorometric analysis of compounds involved in glycogen turnover. During anoxia, glycogen decreased by 29% and 42% at 10 and 20 min, respectively; the free (soluble) and bound (insoluble) components of glycogen decreased in nearly equal proportions. Brain glucose decreased by 72% at 10 min with little further change there after; G-6-P, G-1-P, and UDPG also declined. During recovery from anoxia, glucose and G-6-P increased above control levels for up to 60 min. G-1-P paralleled G-6-P levels, but UDPG remained low. Glycogen returned to control values by 4 h. The findings suggest that although glycogen is mobilized slowly in newborn rat brain, the metabolite contributes at least one-third of the cerebral energy supply during anoxia. Presumably, readily available stores of glycogen combined with low cerebral metabolic requirements underscore the known tolerence of immature animals to hypoxic stress. Glycogen accumulation during recovery appears to be facilitated at the synthetase step, since equilibrium measurements of the phosphoglucomutase and pyrophosphorylase systems indicate that these reactions are not rate-limiting for glycogen synthesis.  相似文献   

5.
31P NMR spectra of heart in-situ in live guinea pigs were obtained continuously in 20.5 s time blocks during 3 min of anoxia, during subsequent reoxygenation and, in separate animals, during terminal anoxia. Reversible anoxia resulted in rapid degradation of phosphocreatine (t 1/2 = 54.5 +/- 2.5 s) which recovered fully during reoxygenation. Heart Pi increased during anoxia and returned to basal levels after oxygen was restored. During 3 min of anoxia, no significant changes in ATP levels or pH were detected. The results demonstrate that it is feasible to measure rapid fluxes of high energy phosphates by 31P NMR in intact animals during and after anoxic stress to the myocardium.  相似文献   

6.
Earlier results are reviewed suggesting that transient pronounced, incomplete cerebral ischemia could be more deleterious for the recovery of brain tissue energy state than a complete interruption of the blood flow. Measurements of respiratory function of brain mitochondria, isolated after 30 min of either complete or incomplete ischemia, demonstrated a similar inhibition of respiratory activity and maximal phosphorylation rates in both situations. This inhibition was totally normalized during recirculation after complete ischemia while a further deterioration was found after incomplete ischemia. The in vivo alterations of the cortical tissue distribution of redox states during transient, incomplete ischemia (15--60 min) were measured using a flying spot fluorometer, which gives a real-time and on-line display of the tissue distribution of NADH and oxidized flavoprotein. A reoxidation in both systems was demonstrated during the recirculation period and the distribution of redox states showed no further heterogeneity in the postischemic period as compared to the preischemic distribution. It is concluded that reoxygenation of the brain tissue is possible even after long periods of incomplete ischemia. The normal distribution of redox states during recirculation suggests that mechanisms other than an impaired or inhomogeneous oxygen delivery during the postischemic period are responsible for the failure in recovery of mitochondrial function and tissue energy state.  相似文献   

7.
To examine the process of spontaneous autoresuscitation and the recovery of the hypoxic ventilatory response (HVR) after prolonged anoxia, we monitored respiratory frequency (f, by body plethysmography) and heart rate (HR, by ECG) in intact newborn rats (n = 12, day 2-4) before, during, and after 100% N2 exposure. The rat before anoxia showed signs of HVR: f changes at acute hypoxia (10% O2) and hyperoxia (100% O2). During anoxia, the spontaneous respiratory movement "gasping" appeared for 21 min (mean). At O2 restoration (with 100% O2), gasping stopped and no respiratory flow was detected for 1 min. One rat failed to autoresuscitate and had heart arrhythmia during the transient apnea, but 11 rats recovered respiration after the HR acceleration. Despite the successful autoresuscitation, the rats did not show HVR at 10 min into the recovery period and the recovery of HVR required more than 30 min. The results indicate that O2 inhalation is useful to trigger autoresuscitation even when the rat has already been in a state of profound hypoxic depression, but the rat becomes transiently insensitive to HVR after autoresuscitation. We estimate that reform of the respiratory control system in newborn rats is not yet firmly established to track HVR early in the recovery phase after prolonged anoxia.  相似文献   

8.
The Western painted turtle survives months without oxygen. A key adaptation is a coordinated reduction of cellular ATP production and utilization that may be signaled by changes in the concentrations of reactive oxygen species (ROS) and cyclic nucleotides (cAMP and cGMP). Little is known about the involvement of cyclic nucleotides in the turtle’s metabolic arrest and ROS have not been previously measured in any facultative anaerobes. The present study was designed to measure changes in these second messengers in the anoxic turtle. ROS were measured in isolated turtle brain sheets during a 40-min normoxic to anoxic transition. Changes in cAMP and cGMP were determined in turtle brain, pectoralis muscle, heart and liver throughout 4 h of forced submergence at 20–22°C. Turtle brain ROS production decreased 25% within 10 min of cyanide or N2-induced anoxia and returned to control levels upon reoxygenation. Inhibition of electron transfer from ubiquinol to complex III caused a smaller decrease in [ROS]. Conversely, inhibition of complex I increased [ROS] 15% above controls. In brain [cAMP] decreased 63%. In liver [cAMP] doubled after 2 h of anoxia before returning to control levels with prolonged anoxia. Conversely, skeletal muscle and heart [cAMP] remained unchanged; however, skeletal muscle [cGMP] became elevated sixfold after 4 h of submergence. In liver and heart [cGMP] rose 41 and 127%, respectively, after 2 h of anoxia. Brain [cGMP] did not change significantly during 4 h of submergence. We conclude that turtle brain ROS production occurs primarily between mitochondrial complexes I and III and decreases during anoxia. Also, cyclic nucleotide concentrations change in a manner suggestive of a role in metabolic suppression in the brain and a role in increasing liver glycogenolysis.  相似文献   

9.
Axoplasmic transport of cat sciatic nerves was studied in vitro in a chamber in which maximal alpha action potentials could also be elicited. After initiation of N2 anoxia, electrical responses fell to zero at an average time of 22 min. A shorter time to zero of 11 min was seen during a second period of anoxia. A good recovery of both action potential responses and axoplasmic transport occurs after a period of anoxia lasting 1--1.5 hr. An apparent failure of recovery of axoplasmic transport was seen after 2 hr of anoxia with a good recovery of electrical responses. Axoplasmic transport tended to return toward normal when more time was allowed for recovery after anoxia. An adequate supply of approximately P was shown to be present by measurement of ATP and creatine phosphate levels. The delay in recovery of transport thus signifies a failure of utilization of approximately P by the transport mechanism. Longer periods of anoxia and recovery were limited in vitro and for this reason, ischemic anoxia was produced in vivo. Blood pressure cuffs were placed on the upper thigh of cats and maintained for times of 1--8 hr at pressures of 300-310 mm Hg. Then, recovery times up to 7 days were allowed. It was shown that axoplasmic transport could gradually recovery after an anoxia lasting up to 6-7 hr if sufficient recovery times were allowed. A possible explanation for the delay in the recovery of axoplasmic transport and the disassociation in the earlier recovery of electrical responses as against the recovery of transport was discussed.  相似文献   

10.
Effects of hypoxia, anoxia, and endogenous ethanol (EtOH) on selected temperature (T(sel)) and activity in goldfish were evaluated. Blood and brain EtOH concentrations ([EtOH]) and brain oxygen partial pressure (PO(2)) were quantified at crucial ambient oxygen pressures. Below a threshold value near 31 Torr, T(sel) decreased as a function of environmental PO(2). T(sel) of 15 degrees C-acclimated fish was approximately 10 degrees C at the onset of anoxia and changed little over 2 h. Activity showed a similar response pattern. Brain [EtOH] was significantly elevated above control levels after 1 h anoxia. In normoxic water, T(sel) remained different in previously anoxic and normoxic control fish for approximately 20 min. Blood [EtOH] of previously anoxic fish remained significantly elevated ([EtOH] >4.0 micromol/g blood), and activity was significantly depressed at 20 min. Brain PO(2) reached normal levels in <3 min. We conclude that [EtOH] (brain or blood) and brain PO(2) are not proximal causes of either behavioral anapyrexia (hypothermia) or inactivity in goldfish exposed to oxygen-depleted environments.  相似文献   

11.
Microhemodynamics and oxygen tension (pO2) in the brain cortex tissues as well as the heart rate were studied in rodents with different ecological specialization during hypoxia produced by subcutaneous injection of sodium nitrite (3 mg/100 g body mass). It was shown that the blood flow in animals with low (rats) and high (muskrats) resistance to hypoxia decreased by the 30th min of the nitrite action, with its subsequent restoration to 85% and 83% of the initial level by the 60th min. The interspecies difference consisted in an increase of the brain blood flow (by 24%) in muskrats and a decrease (by 33%) in rats 15 min after the injection. In rats, simultaneously with the blood-flow dynamics, a pO2 increase was observed in some brain cortex microareas, while in others—a pO2 decrease 15 min after the NaNO2 injection: meanwhile, in muskrats, at this time period a significant pO2 decrease was observed on the background of a blood flow increase. In both animal species, the pO2 minimal value was reached by the 45th min, while restoration almost to the initial levels—by the 60th min of the nitrite action. Changes in the rats, synchronous and unidirectional with the heart rate frequency, of the brain blood-flow, as well as tachycardia developing throughout the whole experiment in rats allow suggesting that restoration of the oxygen regime in the brain cortex microareas is provided by activation of systemic mechanisms of regulation of circulation.  相似文献   

12.
Anoxia-tolerant animal models are crucial to understand protective mechanisms during low oxygen excursions. As glycogen is the main fermentable fuel supporting energy production during oxygen tension reduction, understanding glycogen metabolism can provide important insights about processes involved in anoxia survival. In this report we studied carbohydrate metabolism regulation in the central nervous system (CNS) of an anoxia-tolerant land snail during experimental anoxia exposure and subsequent reoxygenation. Glucose uptake, glycogen synthesis from glucose, and the key enzymes of glycogen metabolism, glycogen synthase (GS) and glycogen phosphorylase (GP), were analyzed. When exposed to anoxia, the nervous ganglia of the snail achieved a sustained glucose uptake and glycogen synthesis levels, which seems important to maintain neural homeostasis. However, the activities of GS and GP were reduced, indicating a possible metabolic depression in the CNS. During the aerobic recovery period, the enzyme activities returned to basal values. The possible strategies used by Megalobulimus abbreviatus CNS to survive anoxia are discussed.  相似文献   

13.
Axoplasmic transport of cat sciatic nerves was studied in vitro in a chamber in which maximal α action potentials could also be elicited. After initiation of N2 anoxia, electrical responses fell to zero at an average time of 22 min. A shorter time to zero of 11 min was seen during a second period of anoxia. A good recovery of both action potential responses and axoplasmic transport occurs after a period of anoxia lasting 1–1.5 hr. An apparent failure of recovery of axoplasmic transport was seen after 2 hr of anoxia with a good recovery of electrical responses. Axoplasmic transport tended to return toward normal when more time was allowed for recovery after anoxia. An adequate supply of ~P was shown to be present by measurement of ATP and creatine phosphate levels. The delay in recovery of transport thus signifies a failure of utilization of ~P by the transport mechanism. Longer periods of anoxia and recovery were limited in vitro and for this reason, ischemic anoxia was produced in vivo. Blood pressure cuffs were placed on the upper thigh of cats and maintained for times of 1–8 hr at pressures of 300–310 mm Hg. Then, recovery times up to 7 days were allowed. It was shown that axoplasmic transport could gradually recovery after an anoxia lasting up to 6–7 hr if sufficient recovery times were allowed. A possible explanation for the delay in the recovery of axoplasmic transport and the disassociation in the earlier recovery of electrical responses as against the recovery of transport was discussed.  相似文献   

14.
Frog (Rana pipiens) sciatic nerve was incubated, with and without stimulation, in an oil bath. The correlation between changes in the magnitude of the compound action potential (α and β) and changes in metabolites, particularly energy reserves, during anoxia and recovery from anoxia was studied. The time to extinction of the action potential in anoxia was frequency-dependent. The action potential could not be restored, nor its extinction delayed, by washing the nerve in O2-free Ringer's solution. Therefore, in this system extracellular K+ accumulation was not a significant factor in blocking impulse conduction. At the time of complete nerve block resulting from anoxia (90 min at rest), ATP, P-creatine and glucose were 30, 10 and 10 per cent, respectively, of initial levels. Glycogen did not fall below 42 per cent of control levels even after 5 h of anoxia. Changes in the levels of energy reserves during anoxia were used to calculate the metabolic rate of nerves at rest and during stimulation. In one series of experiments, the resting metabolic rate was 0·12 mequiv. of ‘high-energy phosphate’ (~P)/kg/min. Stimulation increased the metabolic rate to 0·22 mequiv. of ~P/kg/min at 30 Hz and to 0·29 mequiv. of ~P/kg/min at 100 Hz. The change in metabolic rate when the nerve passed from the resting to the stimulated state was quite abrupt, an observation suggesting that the slow transition observed with methods monitoring O2, consumption was largely instrumental. In nerve stimulated to exhaustion in the absence of O2, neither ATP nor P-creatine had fully recovered within 60 min after O2, was readmitted, although the action potential reached supranormal levels 15 min after return to O2. The ratio of lactate: pyruvate, which increased as expected during anoxia, paradoxically increased even further after O2, was readmitted. The rate of energy utilization during recovery was 0·30 mequiv. of ~P/kg/min. Nerves stimulated at 100–200 Hz in O2, exhibited no changes in levels of P-creatine, ATP or lactate, an observation implying that the nerve could not be made to use ~P faster than oxidation of glucose could provide it. This meant that the maximal metabolic rate was not limited by the rate of supply of chemical energy. Instead, the limitation may have arisen as a result of a limited rate at which ionic imbalance can result from stimulation or a limited pump capacity of the axonal membrane. Nerves stimulated at 200 Hz in O2 for 20 min and then transferred to an O2-free environment without further stimulation exhibited an increase in the rate of energy utilization (nearly two-fold) over the resting rate, a finding that suggested a metabolic (ionic?) debt as a result of activity which could not be met even though the energy supply was adequate. Therefore, restriction of energy expenditure by a limiting pumping rate seemed to be the most likely explanation. The resting metabolic rate of frog sciatic nerve was only one-quarter to one-third of the rate for rat sciatic nerve, when compared at the same temperature (25°C).  相似文献   

15.
Abstract: Within the first few hours of life in the mouse, marked changes were seen in brain endogenous free fatty acids (FFA). A 21% decrease in the total FFA pool occurred during the 1st h of life, and a constant value was maintained thereafter to 10 h. Polyunsaturated fatty acids displayed a different pattern of change. There was 27% less free ararhidonic acid at birth (0 h) than 1 h later. Similar values were obtained for docosahexaenoic acid at birth and at 10 h, although palmitoleic and oleic acids decreased markedly after 1 h. The polyunsaturated fatty acyl chains of diglycerides (DG) showed a statistically significant increase as a function of time after birth, despite an unchanged total DG pool size. The brains of pups subjected to 40 min of N2-anoxia immediately after delivery exhibited a decrease in FFA, especially the monoenoic components, but 60 min of anoxia yielded higher FFA levels. Anoxia induced at 10 h increased FFA and arachidonic acid was higher than when anoxia was induced at 0 h. FFA accumulation was further stimulated by raising the environmental temperature during anoxia. When anoxia was induced, DG exhibited a net increase in palmitate, oleate, and palmitoleate at 0 and 10 h. No arachidonoyl-DG accumulated at 0 h, even after 60 min of anoxia, and stearate was unchanged at 0 and 10 h. The lipid changes observed in the brain during the first hours of life suggest that the enzymatic reactions that promote accumulation of free arachidonic and docosahexaenoic acids and arachidonoyl-DG in the mature brain are present at low levels at the time of delivery. The sluggish modifications found in our study may be related to the longer resistance of newborns to oxygen deficiency.  相似文献   

16.
—Fructose levels were determined in plasma and brain of 8- to 12-day-old mice at intervals after the injection of 30 mmol/kg intraperitoneally; controls received NaCl, 15 mmol/kg. In normal animals brain fructose increased very slowly despite a rapid rise in plasma levels (120 times the control value in 5 min). At 40 min the cerebral level was 1.54 ± 0.23 mmol/kg; the corresponding plasma level was 47.1 ± 4.8 mM. The data suggest that fructose can serve as a source of energy to the brain in times of critical need: during insulin hypoglycemia brain fructose increased to only 0.88 ± 0.05 mmol/kg during the same interval (40 min) despite plasma fructose values equal to those in control animals; also 30 s after cerebral ischemia (decapitation) brain fructose fell from a zero time value of 1.19 ± 0.09 mmol/kg (20 min after fructose injection) to 0.76 ± 0.06 mmol/kg (P= 0.005). Under both circumstances (hypoglycemia and ischemie anoxia) an apparent threshold concentration of fructose for utilization was observed—0.6–0.7 mmol/kg. The most likely explanation for this finding appears to be that this level of fructose was in the extracellular space of the brain. Hexokinase activity in brain homogenates of 8- to 12-day-old mice with fructose and ATP at concentrations found in vivo and during ischemie anoxia did not appear to be rate-limiting. We concluded that the major handicap to the use of fructose by the brain was the limited penetration of fructose from the blood to the brain.  相似文献   

17.
Carbohydrate and energy metabolism of the flooding- and anoxia-tolerant Iris pseudacorus and the intolerant Iris germanica rhizomes were investigated under experimental anoxic conditions. Rhizomes of I. pseudacorus and I. Germanica were incubated in the absence of oxygen from 0 to 60 and 16 days, respectively. Amounts of glucose, total reducing sugars and non-reducing sugars (starch, fructan and oligosaccharides) in the rhizomes were measured. Ethanol concentration and adenylate energy charge were determined enzymatically. Glucose content of I. pseudacorus rhizomes decreased gradually during the first 30 days under anoxia and then increased at the same time as adenylate energy charge values started to decline. In I. germanica rhizomes the changes were more dramatic and the time scale was much shorter than in I. pseudacorus but the changes were similar. Non-reducing sugar content of I. pseudacorus rhizomes decreased rapidly during the first 15 days under oxygen deprivation and then increased again, to near starting levels at 35 days. In I. germanica the amount of non-reducing sugars decreased gradually during the anoxic incubation. Under aerobic control conditions, adenylate energy charge (AEC) of I. pseudacorus and I. germanica rhizome tissue was 0.87±0.01 and 0.81±0.01, respectively. In I. pseudacorus AEC remained high until 30 days under anoxia. In contrast, the energy charge of I. germanica rhizome tissue remained above 0.6 for 4 days only. Large amounts of ethanol were found in anoxic rhizome tissues of I. pseudacorus (up to 0.21 M ) and I. germanica (0.06 M ) after 45 days and 8 days, respectively. The results are discussed in relation to flooding tolerance of these species.  相似文献   

18.
Hypoxic pretreatment of tomato (Lycopersicon esculentum M.) roots induced an acclimation to anoxia. Survival in the absence of oxygen was improved from 10 h to more than 36 h if external sucrose was present. The energy charge value of anoxic tissues increased during the course of hypoxic acclimation, indicating an improvement of energy metabolism. In acclimated roots ethanol was produced immediately after transfer to anoxia and little lactic acid accumulated in the tissues. In nonacclimated roots significant ethanol synthesis occurred after a 1-h lag period, during which time large amounts of lactic acid accumulated in the tissues. Several enzyme activities, including that of alcohol dehydrogenase, lactate dehydrogenase, pyruvate decarboxylase, and sucrose synthase, increased during the hypoxic pretreatment. In contrast to maize, hexokinase activities did not increase and phosphorylation of hexoses was strongly inhibited during anoxia in both kinds of tomato roots. Sucrose, but not glucose or fructose, was able to sustain glycolytic flux via the sucrose synthase pathway and allowed anoxic tolerance of acclimated roots. These results are discussed in relation to cytosolic acidosis and the ability of tomato roots to survive anoxia.  相似文献   

19.
The metabolic changes of mature grape berries during periodsof anoxia and upon return to air were examined using two cultivars.Glutamate declined during anoxia, together with a correspondingaccumulation of -aminobutyrate (GABA). The reverse occurredduring a 24 h period of air. Total adenine nucleotide (AdN),ATP level, and adenylate energy charge (AEC) all declined duringperiods of anoxia but showed a reversible pattern upon subsequentaeration. However, aerobic recovery of metabolite levels wasnot observed when the duration of anoxia at 30°C exceeded6 d. Accumulated ethanol during anoxia (up to 0.22 M) triggered afurther increase in the rate of ethanol synthesis when stressedberries were returned to air. Ethanol may be the principal determinantgoverning the ability of grapes to withstand and recover fromanoxic stress. We propose that the imbalance between aerobicand fermentative pathways may be due to the ability of ethanolto impair mitochondrial membrane function and uncouple oxidativephosphorylation, the rate of anaerobic respiration being insufficientto meet energy requirements. Key words: Grape, energy metabolism, anaerobic stress, aeration, ethanol production  相似文献   

20.
Abstract— The activity of DNA-dependent RNA polymerase and the synthesis of microsomal protein were investigated after various periods of anoxic condition produced with rabbit brain in an in vitro experimental model. There was prompt inhibition of protein synthesis even after an anoxic period of 5 min, and inhibition was more than 80 per cent after an anoxic period of 30 min. However, RNA polymerase activity was retained during the early stage of anoxia, but definite inhibition appeared after an anoxic period of 15 min. Comparisons with other available information suggest that the inhibition of protein synthesis observed with brain slices is closely related to their polysomal function, that irreversibility of inhibition of protein synthesis might be related to the involvement of nuclear RNA synthesizing mechanism, and that these can occur both in the neuronal and glial elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号