首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curing and genetic transfer experiments showed that lactose-fermenting ability (Lac+) and the ability to produce mucoidness in milk cultures (Muc+) in Streptococcus cremoris MS were coded on plasmids. The Lac+ phenotype was associated with a 75.8-megadalton plasmid, pSRQ2201. The Muc+ phenotype was associated with a 18.5-megadalton plasmid, pSRQ2202. The Lac plasmid, pSRQ2201, was first conjugatively transferred from S. cremoris MS to LacS. lactis ML-3/2.2. Later, the Muc plasmid, pSRQ2202, was conjugatively transferred from Lac Muc+S. cremoris MS04 to Lac+ nonmucoid S. lactis transconjugant ML-3/2.201. Subsequently, pSRQ2201 and pSRQ2202 were cotransferred from Lac+ Muc+S. lactis transconjugant ML-3/2.202 to Lac, nonmucoid, malty S. lactis 4/4.2 and S. lactis subsp. diacetylactis SLA3.25. Transconjugants showing pSRQ2201 were Lac+; those containing pSRQ2202 were Muc+. With the transfer of pSRQ2202, the transconjugants S. lactis ML-3/2.202 and S. lactis subsp. diacetylactis SLA3.2501 not only acquired the Muc+ phenotype but also resistance to bacteriophages, which were lytic to the respective parent strains S. lactis ML-3/2.201 and S. lactis subsp. diacetylactis SLA3.25.  相似文献   

2.
Agar surface conjugal matings were used to introduce heat-sensitive phage resistance (Hsp+) determinants carried on the conjugal plasmid pTR2030 into Streptococcus cremoris KH, HP, 924, and TDM1. Lactose-fermenting (Lac+) transconjugants were selected from matings of Lac variants of S. cremoris KH, HP, 924, and TDM1 with Streptococcus lactis ME2 or a high-frequency donor, S. lactis T-EK1 (pTR1040, Lac+; pTR2030, Hsp+). For all of the S. cremoris strains examined, select Lac+ transconjugants were completely resistant to plaquing by their homologous lytic phages. In all cases the plaquing efficiencies were less than 10−9. Acquisition of a 30-megadalton plasmid (pTR2030) in the S. cremoris phage-resistant transconjugants was demonstrated by direct plasmid analysis, by hybridization with 32P-labeled probes, or by conjugal transfer of pTR2030 out of the phage-resistant transconjugants into a plasmid-cured recipient, S. lactis LM2302. Acid production, coagulation ability, and proteolytic activity of phage-resistant transconjugants in milk were comparable to those of their phage-sensitive parents. Further, S. cremoris phage-resistant transconjugants were not attacked by phage in starter culture activity tests, which included a 40°C incubation period. The results demonstrated that phage resistance determinants on pTR2030 could be conjugally transferred to a variety of S. cremoris strains and confer resistance to phage under conditions encountered during cheese manufacture. Phage-resistant transconjugants of S. cremoris M43 and HP were also constructed without the use of antiblotic markers to select conjugal recipients from mating mixtures.  相似文献   

3.
Conjugal Transfer of Genetic Information in Group N Streptococci   总被引:18,自引:34,他引:18       下载免费PDF全文
Streptococcus lactis strains ML3 and C2O and S. lactis subsp. diacetylactis strains DRC3, 11007, and WM4 were found to transfer lactose-fermenting ability to LM0230, an S. lactis C2 lactose-negative (Lac) derivative which is devoid of plasmid deoxyribonucleic acid (DNA). Lactose-positive streptomycin-resistant (Lac+ Strr) recombinants were found when the Lac+ Strs donor was mixed with Lac Strr LM0230 in solid-surface matings. Transduction and transformation were ruled out as the mechanism of genetic exchange in strains ML3, DRC3, 11007, and WM4, nor was reversion responsible for the high number of Lac+ Strr recombinants. Furthermore, chloroform treatment of the donor prevented the appearance of recombinants, indicating that transfer of lactose-fermenting ability required viable cell-to-cell contact. Strain C2O demonstrated transduction as well as conjugation. Transfer of plasmid DNA during conjugation for all strains was confirmed by demonstrating the presence of plasmid DNA in the transconjugants by using agarose gel electrophoresis. In some instances, a cryptic plasmid was transferred in conjunction with the lactose plasmid by using strains DRC3, 11007, and WM4. In S. lactis C2 × LM0230 matings, the Strr marker was transferred from LM0230 to C2, suggesting conjugal transfer of chromosomal DNA. The results confirm conjugation as another mechanism of genetic exchange occurring in dairy starter cultures.  相似文献   

4.
Lactose- and proteinase-negative (Lac Prt) mutants of Streptococcus lactis C10, ML3, and M18 were isolated after treatment with ethidium bromide. The Lac Prt mutants of C10 were missing a 40-megadalton plasmid. A 33-megadalton plasmid was absent in the ML3 mutants, and the M18 variants lacked a 45-megadalton plasmid. The results suggest a linkage of these metabolic traits to the respective plasmids. The possible complexity of the interrelationship between lactose metabolism and proteinase activity is presented.  相似文献   

5.
Lactose-fermenting mucoid (Lac+ Muc+) variants of plasmid-free Streptococcus lactis subsp. lactis MG1614 were obtained by protoplast transformation with total plasmid DNA from Muc+S. lactis subsp. cremoris ARH87. By using plasmid DNA from these variants for further transformations followed by novobiocininduced plasmid curing, Lac Muc+ MG1614 strains containing only a single 30-megadalton plasmid could be constructed. This plasmid, designated pVS5, appeared to be associated with the Muc+ phenotype.  相似文献   

6.
Transformation of Streptococcus lactis Protoplasts by Plasmid DNA   总被引:19,自引:16,他引:3       下载免费PDF全文
Polyethylene glycol-treated protoplasts prepared from Streptococcus lactis LM3302, a lactose-negative (Lac) derivative of S. lactis ML3, were transformed to lactose-fermenting ability by a transductionally shortened plasmid (pLM2103) coding for lactose utilization.  相似文献   

7.
Temperate phage was induced from Streptococcus cremoris C3 and morphologically characterized by high-resolution electron micrographic techniques. Interspecies genetic transfer of lactose-fermenting ability by the temperate phage was demonstrated, using two lactose-negative (Lac) S. lactis strains as recipients. Plasmid transfer was confirmed by agarose gel electrophoresis. Transductant plasmid profiles were of three types—those containing no visible plasmid deoxyribonucleic acid, those possessing a 23-megadalton (Mdal) plasmid, and those containing a 23-Mdal plasmid and a 30-Mdal plasmid. A Lac+ transductant could serve as a donor of the lac determinants during solid-surface matings. These results add to previously published reports of inter- and intraspecies genetic transfer in dairy starter cultures.  相似文献   

8.
Eight of 40 strains of Streptococcus lactis and S. lactis subsp. diacetylactis were able to conjugally transfer a degree of phage insensitivity to Streptococcus lactis LM0230. Transconjugants from one donor strain, S. lactis subsp. diacetylactis 4942, contained a 106-kilobase (kb) cointegrate plasmid, pAJ1106. The plasmid was conjugative (Tra+) and conferred phage insensitivity (Hsp) and lactose-fermenting ability (Lac) in S. lactis and Streptococcus cremoris transconjugants. The phage resistance mechanism was effective against prolate- and small isometric-headed phages at 30°C. In S. lactis transconjugants, the phage resistance mechanism was considerably weakened at elevated temperatures. A series of deletion plasmids was isolated from transconjugants in S. cremoris 4854. Deletion plasmids were pAJ2074 (74 kb), Lac+, Hsp+, Tra+; pAJ3060 (60 kb), Lac+, Hsp+; and pAJ4013 (13 kb), Lac+. These plasmids should facilitate mapping Hsp and tra genes, with the aim of constructing phage-insensitive strains useful to the dairy industry.  相似文献   

9.
It has been previously observed that loss of plasmid pGK4101 occurred concomitantly with loss of lactose-fermenting ability in Streptococcus lactis subsp. diacetylactis 18-16. Transfer of this 41-megadalton plasmid to LM0230, a lactosenegative (Lac) strain of S. lactis, required cell-to-cell contact and resulted in a conversion of LM0230 to the Lac+ phenotype. This confirms the linkage of lactose-fermenting ability to the 41-megadalton plasmid in S. lactis subsp. diacetylactis and, in addition, demonstrates transfer by a process resembling conjugation in the group N streptococci.  相似文献   

10.
Summary Conjugation between lactose-fermenting (Lac+)Streptococcus lactis C2 and Lac Leuconostoc cremoris CAF7 was performed. The frequency of Lac+ transfer was 1.5 · 10–2 per donor cell. Lac+ Leuconostoc transconjugants could ferment lactose significantly faster than wild-type cells. When grown in litmus milk fortified with 0.2% yeast extract, Lac+ transconjugants reached pH 4.68 within 24 h at 30°C and produced diacetyl. The identity of the transconjugants asLeuconostoc derivatives was confirmed by their resistance to phage c2 and to vancomycin (>500 g/ml), and by growth on selective medium containing azide. Plasmid profiles of 10 transconjugants showed two unique patterns. A novel enlarged plasmid was found. Southern blot hybridization revealed some homology with the 30 Md Lac+ plasmid of donor, recipient and the transconjugants, as well as with some of the remaining plasmids of the donor.Technical Paper No. 7953, Oregon Agricultural Experiment Station.  相似文献   

11.
The conjugative transposon Tn919, originally isolated in Streptococcus sanguis FC1, is capable of low-frequency transfer (10−7 and 10−8 per recipient) on membrane filters to a wide number of streptococcal recipients including the industrially important lactic streptococci. The introduction of pMG600 (Lac+ Lax; a lactose plasmid capable of conjugative transfer at high frequencies and which, in certain hosts, confers an unusual clumping phenotype) into a Streptococcus lactis CH919 donor, generating S. lactis CH001, resulted in a significant improvement in the transfer frequency of Tn919 to S. lactis CK50 (1.25 × 10−4 per recipient). In addition, these matings could be performed on agar surfaces, allowing the recovery of a greater number of recipients than with filter matings. Tn919 also transferred at high frequency to S. lactis subsp. diacetylactis 18-16S but not to Streptococcus cremoris strains. Insertion in 18-16S transconjugants generated from filter matings with an S. lactis CH919 donor was random, occurring at different sites on the chromosome and also in plasmid DNA. Thus, the conditions necessary for the practical exploitation of Tn919 in the targeting and cloning of genes from a member of the lactic streptococci, namely, high-frequency delivery and random insertion in host DNA, were achieved.  相似文献   

12.
Streptococcus cremoris C3 was found to transfer lactose-fermenting ability to LM2301, a Streptococcus lactis C2 lactose-negative streptomycin-resistant (Lac Strr) derivative which is devoid of plasmid deoxyribonucleic acid (DNA); to LM3302, a Lac erythromycin-resistant (Eryr) derivative of S. lactis ML3; and to BC102, an S. cremoris B1 Lac Eryr derivative which is devoid of plasmid DNA. S. cremoris strains R1, EB7, and Z8 were able to transfer lactose-fermenting ability to LM3302 in solid-surface matings. Transduction and transformation were ruled out as mechanisms of genetic transfer. Chloroform treatment of donor cells prevented the appearance of recombinant clones, indicating that viable cell-to-cell contact was responsible for genetic transfer. Transfer of plasmid DNA was confirmed by agarose gel electrophoresis. Transconjugants recovered from EB7 and Z8 matings with LM3302 exhibited plasmid sizes not observed in the donor strains. Transconjugants recovered from R1, EB7, and Z8 matings with LM3302 were able to donate lactose-fermenting ability at a high frequency to LM2301. In S. cremoris R1, EB7, and Z8 matings with LM2301, streptomycin resistance was transferred from LM2301 to the S. cremoris strains. The results confirm genetic transfer resembling conjugation between S. cremoris and S. lactis strains and present presumptive evidence for plasmid linkage of lactose metabolism in S. cremoris.  相似文献   

13.
Ten previously reported lactose-positive (Lac+) transconjugants from Streptococcus lactis, S. cremoris, and S. lactis subsp. diacetylactis and one sucrose-positive (Suc+) transconjugant from S. lactis were examined for their sensitivity to prolate- and small isometric-headed bacteriophages. Four of the Lac+ transconjugants showed a 10- to 100-fold reduction in the efficiency of plating (EOP) as well as a reduced plaque size for the prolate phage c2 and were insensitive to the small isometric phage 712. A fifth Lac+ transconjugant demonstrated a similar reduced sensitivity to phage c2; however, this transconjugant was able to plaque phage 712, but with a reduced plaque size and EOP. The other five Lac+ transconjugants were sensitive to both c2 and 712 phages. The Suc+ transconjugant plaqued phage 712 with a reduced plaque size and EOP, but no reduction in plaque size or EOP was observed for phage c2. The Lac+ and reduced bacteriophage sensitivity (Rbs+) phenotypes were correlated with specific plasmids in the Lac+ transconjugants. As four of the Lac+ transconjugants exhibited a phenotypically indistinguishable Rbs+, one (AB001) was selected for further study. The Rbs+ in AB001 for both small isometric- and prolate-headed phages was not related to adsorption, and the reduced EOP for phage c2 was not related to the presence of a restriction and modification system. The latent period for phage c2 was unchanged, but the burst size was reduced 80%. The presence of the plasmid coding for Rbs+ retarded the lysis of a mitomycin C-induced prophage-containing strain. The Rbs+ mechanism appears to be abortive phage infection. This study supports previous observations that Rbs+ and conjugal transfer ability are physically linked among some group N streptococci. The results presented have implications in the identification of plasmids coding for Rbs+ and may also aid in explaining the dissemination of Rbs+ genes among lactic streptococci.  相似文献   

14.
Plasmid pAJ1106 and its deletion derivative, plasmid pAJ2074, conferred lactose-fermenting ability (Lac) and bacteriophage resistance (Hsp) at 30°C to Lac proteinase (Prt)-negative Lactococcus lactis subsp. lactis and L. lactis subsp. lactis var. diacetylactis recipient strains. An additional plasmid, pAJ331, isolated from the original source strain of pAJ1106, retained Hsp and conjugative ability without Lac. pAJ331 was conjugally transferred to two L. lactis subsp. lactis and one L. lactis subsp. cremoris starter strains. The transconjugants from such crosses acquired resistance to the phages which propagated on the parent recipient strains. Of 10 transconjugant strains carrying pAJ1106 or one of the related plasmids, 8 remained insensitive to phages through five activity test cycles in which cultures were exposed to a large number of industrial phages at incubation temperatures used in lactic casein manufacture. Three of ten strains remained phage insensitive through five cycles of a cheesemaking activity test in which cultures were exposed to approximately 80 different phages through cheesemaking temperatures. Three phages which propagated on transconjugant strains during cheesemaking activity tests were studied in detail. Two were similar (prolate) in morphology and by DNA homology to phages which were shown to be sensitive to the plasmid-encoded phage resistance mechanism. The third phage was a long-tailed, small isometric phage of a type rarely found in New Zealand cheese wheys. The phage resistance mechanism was partially inactivated in most strains at 37°C.  相似文献   

15.
A phage-insensitive strain of Streptococcus lactis, designated ME2, was used as a prototype strain for the study of mechanisms and genetics of phage resistance in the lactic streptococci. Mutants sensitive to a Streptococcus cremoris phage, ϕ18, were isolated at a level of 17% from cultures of ME2 after sequential transfer at 30°C. Phage-sensitive mutants of ME2 were not fully permissive to ϕ18. The efficiency of plating of ϕ18 on the mutants was 5 × 10−7 as compared with <10−9 for ϕ18 on ME2. Further characterization of the mutants showed that they efficiently adsorbed ϕ18 at levels of >99.8%, whereas ME2 adsorbed only 20 to 40% of ϕ18. These results suggest that increased phage susceptibility of the mutants may result from the loss of a mechanism that inhibits phage adsorption. Moreover, the high frequency of spontaneous mutation in ME2 indicates the involvement of an unstable genetic determinant in this phage defense mechanism. ME2 was shown to possess 13 plasmids ranging in size from 1.6 to 34 megadaltons. Of 40 mutants examined that had increased efficiencies of plating, all were missing a 30-megadalton plasmid, pME0030. These data suggest that pME0030 codes for a function that prevents phage adsorption. Further phenotypic characterization of the phage-sensitive mutants showed that some mutants were deficient in the ability to ferment lactose (Lac) and hydrolyze milk proteins (Prt). However, the Lac+ and Prt+ phenotype segregated independently of the phage-sensitivity phenotype. One phage-sensitive adsorption mutant, designated N1, was tested for susceptibility to 14 different phages. N1 showed increased capacity to adsorb 4 and to replicate 2 of these 14 phages, thereby indicating a phage resistance mechanism in ME2 that generalizes to phage interactions other than the specific ϕ18-ME2 phage-host interaction. These data provide evidence for a unique plasmid-linked phage defense mechanism in phage-insensitive strains of lactic streptococci.  相似文献   

16.
Lactococcus lactis subsp.lactis 484 produced a proteinaceous antibacterial substance designated as lactococcin capable of inhibiting members of theLactococcus group,Bacillus cereus, Staphylococcus aureus, andSalmonella typhi. Growth of this culture in the presence of 2–30 g/ml of ethidium bromide or acriflavin or novobiocin, and at elevated temperature (39° and 41°C), could not produce any lactococcin-negative (Lap) variants. However, protoplast-induced curing with lysozyme was successful in developing Lap derivatives. Two types of cured derivatives, namely Lac Lap+ and Lac Lap, were obtained. Lap variants were also lacking sucrose-fermenting ability (Suc+) and lactococcin resistance (Lapr). The lactose-negative (Lac) variants and Lap+ were clearly lacking the largest (65 Md) plasmid. However, Lap Suc Laps variants lost a 2 Md plasmid.L. lactis subsp.lactis 484 transferred lactose-fermenting ability as well as Lap+ Suc+ Lapr phenotypes simultaneously toL. lactis subsp.lactis LM 2306 and LM 0230 by surface mating at a frequency of 10–4 and 10–1 per donor respectively. However, cured Lac Lap transconjugants could not transfer Lac+ Lap+ Suc+ Lapr phenotypes to any of these recipient strains. Our results indicate that Lac+ and Lap+ Suc+ Lapr phenotypes are associated with 65 Md and 2 Md plasmids respectively. Conjugal transfer of 2 Md plasmid is possible only in the presence of a conjugative 65 Md plasmid.  相似文献   

17.
Protoplasts of plasmid-freeLactococcus lactis subsp.lactis LM 0230 and PC4 strains were cotransformed successfully with the plasmid pools ofL. lactis subsp.lactis 484, a lactosefermenting (Lac+), lactococcin-producing (Lap+), lactococcin-resistant (Lapr), sucrosefermenting (Suc+) wild strain, its derivatives, and pGB 301 erythromycin resistance plasmid (Eryr) at the frequencies of 104 transformants/g of DNA. PC4 protoplasts were transformed at slightly lower frequencies that LM 0230 protoplasts when the same plasmid combinations were used for transformation. Agarose gel electrophoresis of plasmids from three groups of transformants, namely, LacLapEryr, Lac+Suc+Lap+LaprEryr, and LacSuc+Lap+ LaprLapr, confirmed that 2.0 and 65.0 megadalton (MDa) plasmids carried genes for Suc+Lap+Lapr and Lac+ phenotypes respectively. The protoplasts could be transformed with low-molecular-weight 2.0 MDa Lap plasmid at a relatively higher frequency than those with high-molecular-weight 65.0 MDa Lac plasmid. All the transformants resembled parent culture 484 in terms of lactic acid production (0.810–0.840%), milk curdling time (6 h), and lactococcin activity (7–12 mm, zone of inhibition) againstListeria monocytogenes, Salmonella typhi, andStaphylococcus aureus. The plasmids and their respective phenotypes in PC4 transformants were genetically more stable than those of LM 0230 protoplasts. The marker plasmid pGB 301 disappeared more frequently from the transformants when present in association with the lowmolecular-weight, high-copy-number 2.0 MDa plasmid, thereby suggesting the incompatibility of these two plasmids.  相似文献   

18.
Lactococcus lactis W-37 is highly resistant to phage infection. The cryptic plasmids from this strain were coelectroporated, along with the shuttle vector pSA3, into the plasmid-free host L. lactis LM0230. In addition to pSA3, erythromycin- and phage-resistant isolates carried pSRQ900, an 11-kb plasmid from L. lactis W-37. This plasmid made the host bacteria highly resistant (efficiency of plaquing <10−8) to c2- and 936-like phages. pSRQ900 did not confer any resistance to phages of the P335 species. Adsorption, cell survival, and endonucleolytic activity assays showed that pSRQ900 encodes an abortive infection mechanism. The phage resistance mechanism is limited to a 2.2-kb EcoRV/BclI fragment. Sequence analysis of this fragment revealed a complete open reading frame (abiQ), which encodes a putative protein of 183 amino acids. A frameshift mutation within abiQ completely abolished the resistant phenotype. The predicted peptide has a high content of positively charged residues (pI = 10.5) and is, in all likelihood, a cytosolic protein. AbiQ has no homology to known or deduced proteins in the databases. DNA replication assays showed that phage c21 (c2-like) and phage p2 (936-like) can still replicate in cells harboring AbiQ. However, phage DNA accumulated in its concatenated form in the infected AbiQ+ cells, whereas the AbiQ cells contained processed (mature) phage DNA in addition to the concatenated form. The production of the major capsid protein of phage c21 was not hindered in the cells harboring AbiQ.  相似文献   

19.
Nine industrially important strains of Streptococcus cremoris (HP, AM2, ML1, WC, C3, R1, E8, KH, and Wg2) were shown to possess a diversity of plasmid molecules. Molecular weights of plasmids were determined from their relative mobilities after agarose gel electrophoresis and via electron microscopy. To illustrate the varied plasmid sizes, strain HP contained plasmids of 26, 18, 8.5, 3.3, and 2 megadaltons (Mdal); strain ML1 contained plasmids of 29, 18, 9, 4, 2.2, and 1.8 Mdal; and strain AM2 had plasmids of 42, 27, 16, and 8.4 Mdal. The numbers of plasmids observed in the other strains were 6, 5, 5, 7, 5, and 4 for C3, E8, KH, R1, WC, and Wg2, respectively. A spontaneous proteinase-negative (Prt) mutant of HP was missing the 8.5-Mdal plasmid, which suggests that in this strain proteinase activity could be linked to this particular plasmid. A lactose-negative (Lac) Prt mutant of ML1 lacked the 2.2-Mdal plasmid. Under the conditions employed, antibiotic sensitivity and heavy-metal susceptibility did not correlate with the missing plasmid in Prt HP or in the Lac Prt ML1. Curing experiments with AM2, using acridine dyes and elevated temperatures, did not yield Lac variants. AM2 was also cultured at high dilution rates in a chemostat for 168 h by using a buffered milk or lactic broth at 18 or 32°C with no selection of Lac derivatives. The inability to obtain Lac variants under conditions known to facilitate plasmid elimination suggests that lactose metabolism is not plasmid-mediated in AM2.  相似文献   

20.
The fermentation of lactose (Lac+) in the dairy yeast Kluyveromyces lactis var. lactis is controlled by the LAC4 (β-galactosidase) and LAC12 (lactose permease) genes. The complementation analysis of twelve Kl. lactis var. drosophilarum natural homothallic Lac? strains of different origin was carried out using the genetic heterothallic lines of Kl. lactis var. lactis of the lac4LAC12 and LAC4lac12 genotypes. It was shown that the natural Lac? strains did not possess the LAC4LAC12 gene cluster. Southern hybridization of chromosomal DNA with LAC4 and LAC12 probes, as well as recombination analysis, showed that Kl. lactis var. drosophilarum yeasts do not have even silent copies of these genes. As distinct from this yeast, natural Lac? strains of the yeast Kl. marxianus are mutants impaired in the lactose permease gene (lac12 analogue), but possess an active β-galactosidase gene (LAC4 analogue). The origin of the LAC4LAC12 gene cluster of the dairy yeasts Kl. lactis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号