首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Capture threads of the golden orb‐web spider Nephila clavata are produced from the silks of a pair of triad spinning units composed of a flagelliform gland (FLG) and two aggregate glands (AGG). In N. clavata, arrangement of the triad spigots is closely related to coating an axial supporting fiber with sticky aqueous droplets on a continuous and consistent basis for capture thread production. The central spigot of FLG and peripherally located AGG spigots are aligned along a single plane, and both have bullet‐type spigots with flexible segments. In particular, the pear‐shaped spigot of the AGG with a wide‐aperture nozzle provides not only sufficient luminal space for controlling transient storage of the aqueous gluey substance but also an effective spatial system that thoroughly coats the axial fibers with a viscous aqueous solution.  相似文献   

2.
  总被引:2,自引:0,他引:2  
Spider orb-webs contain sticky prey capture threads and non-sticky support threads. Primitive orb-weavers of the Deinopoidea produce dry cribellar threads made of thousands of silk fibrils that surround supporting axial fibres, whereas the viscous threads of modern Araneoidea orb-weavers produce adhesive threads with an aqueous solution that coalesces as droplets around the axial fibres. We have previously shown that the greater diversity of the Araneoidea is phylogenetically significant and attributed this disparity to a number of advantages, considered key innovations, that adhesive thread has over cribellar thread. An important putative advantage of adhesive thread demonstrated by Kohler and Vollrath in their 1995 study is its greater extensibility, a feature that better adapts it to absorb the kinetic energy of a prey strike. However, this conclusion is based on a two-species comparison that does not take advantage of the modern comparative method that requires hypotheses to be tested in a phylogenetic context. Using a transformational analysis to examine threads produced by nine species, our study finds no support for the punctuated explanation that adhesive thread has a greater extensibility than cribellar thread. Instead, it strongly supports the associative null hypothesis that capture thread extensibility is tuned to spider mass and to architectural features of the web, including its capture area, capture spiral spacing, and capture area per radius.  相似文献   

3.
  总被引:4,自引:0,他引:4  
Understanding the web construction behaviour of theridiid (comb-footed) spiders is fundamental to formulating specific evolutionary hypotheses and predictions regarding the reduction of orb-webs. We describe for the first time in detail the web construction behaviour of Achaearanea tepidariorum , Latrodectus geometricus , Theridion sisyphium and T. varians as well as webs of a range of other theridiids. In our survey we distinguish four major web types. Among webs with gumfooted lines, we distinguish between webs with a central retreat ( Achaearanea -type) and those with a peripheral retreat ( Latrodectus -type). Among webs without gumfooted lines, we distinguish between those which contain viscid silk ( Theridion -type) and those with a sheet-like structure, which do not ( Coleosoma -type). Theridiid gumfoot-webs consist of frame lines that anchor them to surroundings and support threads which possess viscid silk. Building of gumfooted lines constitutes a unique stereotyped behaviour and is most probably homologous for Nesticidae and Theridiidae. Webs remained in place for extended periods and were expanded and repaired, but no regular pattern of replacement was observed. We suggest that the cost of producing and maintaining viscid silk might have led to web reduction, at least in theridiids.  © 2003 The Linnean Society of London. Biological Journal of the Linnean Society , 2003, 78 , 293−305.  相似文献   

4.
    
The mechanical properties of spider silks have diverged as spiders have diversely speciated. Because the main components of silks are proteins, it is valuable to investigate their sequences. However, silk sequences have been regarded as difficult information to analyze due to their imbalance and imperfect tandem repeats (ITR). Here, an in silico approach is applied to systemically analyze a group of silk sequences. It is found that every time new spider groups emerge, unique trimer motifs appear. These trimer motifs are used to find additional clues of evolution and to determine relationships with mechanical properties. For the first time, crucial evidence is provided that shows silk sequences coevolved with spider species and the mechanical properties of their fibers to adapt to new living environments. This novel approach can be used as a platform for analyzing other groups of ITR‐harboring proteins and to obtain information for the design of tailor‐made fibrous protein materials.  相似文献   

5.
    
Hybrid silks hold a great potential as specific biomaterials due to its controlled mechanical properties. To produce fibers with tunable properties, here we firstly made chimeric proteins in vitro, called W2C4CT and W2C8CT, with ligation of MaSp repetitive modules (C) with AcSp modules (W) by intein trans splicing technology from smaller precursors without final yield reduction. Intein mediated chimeric proteins form fibers at a low concentration of 0.4 mg/mL in 50 mM K3PO4 pH 7.5 just drawn by hand. Hybrid fibers show smoother surface, and also have stronger chemical resistance as compared with fibers from W2CT (W fibers) and mixture of W2CT/C8CT (MHF8 fibers). Fibers from chimeric protein W2C4CT (HFH4) have improved mechanical properties than W fibers; however, with more C modules W2C8CT fibers (HFH8) properties decreased, indicates the length proportion of various modules is very important and should be optimized for fibers with specific properties. Generally, hybrid silks generated via chimeric proteins, which can be simplified by intein trans splicing, has greater potential to produce fibers with tunable properties. Our research shows that intein mediated directional protein ligation is a novel way to make large chimeric spider silk proteins and hybrid silks. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 385–392, 2016.  相似文献   

6.
7.
8.
    
The water, K+ and Na+ content of naturally produced major ampullate silk as well as silk mechanically drawn from the spider Argiope aurantia have been compared to that of the major ampullate gland. It is demonstrated that water is extracted by the major ampullate duct and that this process is accompanied by an exchange of K+ for Na+. The significance of these observations is discussed.  相似文献   

9.
棒络新妇和悦目金蛛丝腺形态初步观察   总被引:11,自引:0,他引:11  
研究比较了结网型蜘蛛棒络新妇Nephila clavata和悦目金蛛Argiope amoena的丝腺形态特征,为国内蜘蛛丝腺蛋白的研究提供原始的丝腺解剖图,同时结合对2种蜘蛛卵袋的解剖、网的特征和室内捕食黄粉虫Tenebrio molitor幼虫行为的观察比较,探讨了2种蜘蛛丝腺的生物学功能与其生存繁殖策略之间的关系。本文分别观察描述了棒络新妇和悦目金蛛的大壶状腺、小壶状腺、鞭状腺、柱状腺、葡萄状腺和梨状腺共6种丝腺。2种蜘蛛丝腺形态特征基本相似;部分丝腺在形态结构和颜色上有些差异;悦目金蛛的葡萄状腺比棒络新妇发达。观察表明2种蜘蛛的网和卵袋特征差异较大,两者捕食策略也不同,棒络新妇采用咬一捆缚(Bit—Wrapping)策略,悦目金蛛则采用捆缚一咬(Wrapping-Bit)策略。棒络新妇和悦目金蛛的网和卵袋特征与丝腺的颜色相一致。同时,其葡萄状腺数量和大小与其各自的捕食策略相关。  相似文献   

10.
    
Spiders can produce up to seven different types of silks or glues with different mechanical properties. Of these, flagelliform (Flag) silk is the most elastic, and aciniform (AcSp1) silk is the toughest. To produce a chimeric spider silk (spidroin) FlagR-AcSp1R, we fused one repetitive module of flagelliform silk from Araneus ventricosus and one repetitive module of aciniform silk from Argiope trifasciata. The recombinant protein expressed in E. coli formed silk-like fibers by manual-drawing. CD analysis showed that the secondary structure of FlagR-AcSp1R spidroin remained stable during the gradual reduction of pH from 7.0 to 5.5. The spectrum of FTIR indicated that the secondary structure of FlagR-AcSp1R changed from α-helix to β-sheet. The conformation change of FlagR-AcSp1R was similar to other spidroins in the fiber formation process. SEM analysis revealed that the mean diameter of the fibers was around 1 ~ 2 μm, and the surface was smooth and uniform. The chimeric fibers exhibited superior toughness (~33.1 MJ/m3) and tensile strength (~261.4 MPa). This study provides new insight into design of chimeric spider silks with high mechanical properties.  相似文献   

11.
    
Spiders attach silken threads to substrates by means of glue-coated nanofibers (piriform silk), spun into disc-like structures. The organization and ultrastructure of this nano-composite silk are largely unknown, despite their implications for the biomechanical function and material properties of thread anchorages. In this work, the ultrastructure of silken attachment discs was studied in representatives of four spider families with Transmission Electron Microscopy to facilitate a mechanistic understanding of piriform silk function across spiders. Based on previous findings from comparative studies of piriform silk gland morphology, we hypothesized that the fibre-glue proportion of piriform silk differs in different spiders, while the composition of fibre and glue fractions is consistent. Results confirmed large differences in the relative proportion of glue with low amounts in the orb weaver Nephila senegalensis (Araneidae) and the hunting spider Cupiennius salei (Ctenidae), larger amounts in the cobweb spider Parasteatoda tepidariorum (Theridiidae) and a complete reduction of the fibrous component in the haplogyne spider Pholcus phalangioides (Pholcidae). We rejected our hypothesis that glue ultrastructure is consistent. The glue is a colloid with polymeric and fluid fractions that strongly differ in proportions and assembly. We further confirmed that in all species studied both dragline and piriform silk fibres do not make contact with the environmental substrate. Instead, adhesion is established by a thin dense skin layer of the piriform glue. These results advance our understanding of piriform silk function and the interspecific variation of its properties, which is significant for spider biology, web function and the bioengineering of silk.  相似文献   

12.
13.
    
The microstructural organization of the silk‐spinning apparatus of the comb‐footed spider, Achaearanea tepidariorum, was observed by using a field emission scanning electron microscope. The silk glands of the spider were classified into six groups: ampullate, tubuliform, flagelliform, aggregate, aciniform and pyriform glands. Among these, three types of silk glands, the ampullate, pyriform and aciniform glands, occur only in female spiders. One (adult) or two (subadult) pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another pair of minor ampullate glands supply the median spinnerets. Three pairs of tubuliform glands in female spiders send secretory ductules to the median (one pair) and posterior (two pairs) spinnerets. Furthermore, one pair of flagelliform glands and two pairs of aggregate glands together supply the posterior spinnerets, and form a characteristic spinning structure known as a “triad” spigot. In male spiders, this combined apparatus of the flagelliform and the aggregate spigots for capture thread production is not apparent, instead only a non‐functional remnant of this triad spigot is present. In addition, the aciniform glands send ductules to the median (two pairs) and the posterior spinnerets (12–16 pairs), and the pyriform glands feed silk into the anterior spinnerets (90–100 pairs in females and 45–50 pairs in males).  相似文献   

14.
  总被引:1,自引:0,他引:1  
The cribellum is an oval spinning field whose spigots produce silk fibrils that form the outer surfaces of the primitive prey capture threads found in aerial spider webs. A comparison of the cribella and cribellar capture threads of 13 species of spiders representing seven families (Amaurobiidae, Desidae, Dictynidae, Filistatidae, Neolanidae, Oecobiidae, and Uloboridae) confirms that the stickness of a cribellar thread is directly related to the number of spigots on a spider's cribellum. This comparison also demonstrates that the origin of orb-weaving spiders from ancestors that constructed less highly organized webs was associated with increases in both the weight-specific number of cribellum spigots and the weight-specific stickiness of cribellar prey capture threads. In contrast to other cribellate spiders, the number of cribellum spigots of orb-weaving species of the family Uloboridae scales to spider mass. Thus, the origin of orb-weaving spiders involved not only behavioural changes that stylized and restricted the placement of cribellar threads, but also included morphological changes that increased the stickiness of these capture threads by endowing them with more cribellar fibrils.  相似文献   

15.
16.
蜘蛛拖丝蛋白基因的构建及在大肠杆菌中的表达   总被引:20,自引:2,他引:20       下载免费PDF全文
蜘蛛大壶腹线产生的拖丝是非常优良的纤维蛋白, 具有独特的强度和弹性。基于拖丝蛋白高度重复序列和部分cDNA序列, 合成蜘蛛拖丝蛋白基因单体, 通过头尾相连的构建策略, 得到拖丝蛋白多聚体, 与原核高效表达载体pET30a(+)连接, 转化大肠杆菌BLR(DE3), 用IPTG诱导表达。 表达产物经His.Bind树脂金属螯合亲和层析一步纯化, 纯度达90%以上, 表达量为20mg/L。SDS-PAGE和蛋白质印迹图谱显示表达产物分子量为37kD, 其值与氨基酸组分分析结果与理论推算值基本符合。  相似文献   

17.
Research on spider silk proteins has led to the possibility of designing genetically engineered silks according to defined material properties. Here we show the efficient and stable production of spider silk-elastin fusion proteins in transgenic tobacco and potato plants by retention in the ER. The proteins were purified by a simple method, using heat treatment and 'inverse transition cycling'. Laboratory scale extraction of 1 kg tobacco leaf material leads to a yield of 80 mg pure recombinant spider silk-elastin protein. As a possible application, as well as to demonstrate biocompatibility, the growth of anchorage-dependent mammalian cells on spider silk-elastin coated culture plates was compared with conventional coatings such as collagen, fibronectin and poly-D-lysine. The anchorage-dependent chondrocytes showed similar growth behaviour and a rounded phenotype on collagen and on spider silk-elastin coated plates and the proliferation was remarkably superior to untreated polystyrene plates.  相似文献   

18.
    
Spider silk is the toughest known biomaterial and even outrivals modern synthetic high‐performance materials. The question of understanding fiber formation is how the spider can prevent premature and fatal aggregation processes inside its own body and how the chemical and mechanical stimuli used to induce the fiber formation process translate into structural changes of the silk material, finally leading to controlled and irreversible aggregation. Here, the focus will be on the structure and function of the highly conserved N‐domains and C‐terminal domains of spider dragline silk which, unlike the very long repetitive sequence elements, adopt a folded conformation in solution and are therefore able to control intermolecular interactions and aggregation between other spider silk molecules. The structures of these domains add valuable details for the construction of a molecular picture of the complicated and highly optimized silk assembly process that might be beneficial for large‐scale in vitro fiber formation attempts with recombinant silk material. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
林森珠  陈格飞  孟清 《生物工程学报》2016,32(12):1704-1714
为建立高效快捷的蛛丝功能化修饰平台,蛋白质内含子的反式剪接技术被首次应用于重组蛛丝的功能化修饰。在体外通过Ssp Dna B的反式剪接作用,在蛋白质水平上将12 k Da泛素相关修饰蛋白(SUMO)与蛛丝蛋白(W2CT)连接形成功能化蛛丝蛋白SUMOW2CT。修饰后SUMOW2CT与W2CT均能形成纳米至微米级的丝纤维,但SUMOW2CT自动成丝速度明显下降且产量约为W2CT的一半。与W2CT丝纤维(W)相似,SUMOW2CT丝纤维(UW)不具有超收缩能力和对2%SDS不耐受,但机械性能低于W2CT丝纤维。功能化蛋白SUMOW2CT形成的丝纤维中SUMO蛋白仍保持着正确三维结构,可被SUMO蛋白酶酶切。外源功能化蛋白质虽在一定程度上降低了丝的形成速度和机械性能,但修饰上的功能化蛋白仍保持着生物活性,表明断裂蛋白质内含子介导的蛛丝修饰平台成功建立,也为蛛丝的功能化修饰和应用奠定了坚实的技术基础。  相似文献   

20.
悦目金蛛拖丝的超微结构研究   总被引:1,自引:2,他引:1  
蒋平  沈丽  卓春晖  郭聪 《四川动物》2007,26(3):501-505
采用非固定的抽丝方法,从一只未麻醉的悦目金蛛(Argiope amoena)的纺器将拖丝抽出,然后用扫描电镜(SEM)对拖丝进行超微结构的观察,结果表明:悦目金蛛拖丝至少具有2根、3根、4根及多根单丝纤维构成的4种不同结构,其中有一种类似弹簧的结构;另外,丝的表面还出现一种小环结构,这两种结构可能是拖丝纤维具有优良机械性能的原因之一。"束状结构"和"小环结构"在文献中未见报道。拖丝的直径范围为0.25~10.77μm;悦目金蛛似乎能调节拖丝的结构和直径,以适应其所面临的即时环境。本文基于上述观察结果并结合前人的研究,提出了蜘蛛拖丝结构-生物学功能多样性假说,对蜘蛛丝的结构与生物学功能之间的关系作了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号