首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we found that high-performance hydroponics of arsenic hyperaccumulator fern Pteris vittata is possible without any mechanical aeration system, if rhizomes of the ferns are kept over the water surface level. It was also found that very low-nutrition condition is better for root elongation of P. vittata that is an important factor of the arsenic removal from contaminated water. By the non-aeration and low-nutrition hydroponics for four months, roots of P. vittata were elongated more than 500 mm. The results of arsenate phytofiltration experiments showed that arsenic concentrations in water declined from the initial concentrations (50?μg/L, 500?μg/L, and 1000?μg/L) to lower than the detection limit (0.1?μg/L) and about 80% of arsenic removed was accumulated in the fern fronds. The improved hydroponics method for P. vittata developed in this study enables low-cost phytoremediation of arsenic-contaminated water and high-affinity removal of arsenic from water.  相似文献   

2.
* Several fern species can hyperaccumulate arsenic, although the mechanisms are not fully understood. Here we investigate the roles of root absorption, translocation and tolerance in As hyperaccumulation by comparing the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. * The two species were grown in a pot experiment with 0-500 mg As kg-1 added as arsenate, and in a short-term (8 h) uptake experiment with 5 microM arsenate under phosphorus-sufficient conditions. * In the pot experiment, P. vittata accumulated up to 2500 mg As kg-1 frond d. wt and suffered no phytotoxicity. P. tremula accumulated<100 mg As kg-1 frond d. wt and suffered severe phytotoxicity with additions of >or=25 mg As kg-1. In the short-term uptake experiment, P. vittata had a 2.2-fold higher rate of arsenate uptake than P. tremula, and distributed more As taken up to the fronds (76%) than did P. tremula (9%). * Our results show that enhanced root uptake, efficient root-to-shoot translocation, and a much elevated tolerance through internal detoxification all contribute to As hyperaccumulation in P. vittata.  相似文献   

3.
4.
The distributions of arsenic and 6 essential elements in the pinna of As hyperaccumulator, Pteris vittata L., were studied using synchrotron radiation X-ray fluorescence (SRXRF). Significant correlation between the distribution and mobility of the elements revealed that SRXRF study on the elemental distribution was feasible to inspect the transportations of elements in plants. The distribution of As in the pinna showed that As had great abilities to be transported in xylem vessels and from xylem to mesophyll. The distribution of K, one of the most mobile elements in plants, was similar to that of As, whereas the distributions of Fe and Ca with less mobility in plants were almost opposite to that of As in the pinna.  相似文献   

5.
This field-scale hydroponic experiment investigated the effects of plant density and nutrient levels on arsenic (As) removal by the As-hyperaccumulator Pteris vittata L. (Chinese brake fern). All ferns were grown in plastic tanks containing 30 L of As-contaminated groundwater (130 microg x L(-1) As) collected from South Florida. The treatments consisted of four plant densities (zero, one, two, or four plants per 30 L), two nitrogen (N) concentrations (50% or 100% of 0.25-strength Hoagland solution [HS]), and two phosphorous (P) concentrations (15% and 30% of 0.25 strength HS). While low P was more effective than high P for plant As removal initially, N levels showed little effect. At 15% P, it took 3 wk for the ferns at a plant density of four to reduce As to less than 10 microg L(-1) (USEPA and WHO standard), whereas it took 4-6 wk at plant densities of one or two. For reused ferns, established plants with more extensive roots than "first-time" ferns, a low plant density of one plant/30 L was more effective, reducing As in water to less than 10 microg L(-1) in 8 h. This translates to an As removal rate of 400 microg h(-l) plant(-1), which is the highest rate reported to date. Arsenic-concentration in tanks with no plants as a control remained high throughout the experiment. Using more established ferns supplemented with dilute nutrients (0.25 HS with 25% N and 15% P) with optimized plant density (one plant per 30 L) reduced interplant competition and secondary contamination from nutrients, and can be recommended for phytofiltration of As-contaminated groundwater. This study demonstrated that P. vittata is effective in remediating As-contaminated groundwater to meet recommended standards.  相似文献   

6.
A greenhouse experiment was conducted to evaluate the effectiveness of diammonium phosphate (DAP), single superphosphate (SSP) and two growing cycles on arsenic removal by Chinese Brake Fern (Pteris vittata L.) from an arsenic contaminated Typic Haplustept of the Indian state of West Bengal. After harvest of Pteris vittata the total, Olsen's extractable and other five soil arsenic fractions were determined. The total biomass yield of P. vittata ranged from 10.7 to 16.2 g pot(-1) in first growing cycle and from 7.53 to 11.57 g pot(-1) in second growing cycle. The frond arsenic concentrations ranged from 990 to 1374 mg kg(-1) in first growing cycle and from 875 to 1371 mg kg(-1) in second growing cycle. DAP was most efficient in enhancing biomass yield, frond and root arsenic concentrations and total arsenic removal from soil. After first growing cycle, P. vittata reduced soil arsenic by 10 to 20%, while after two growing cycles Pteris reduced it by 18 to 34%. Among the different arsenic fractions, Fe-bound arsenic dominated over other fractions. Two successive harvests with DAP as the phosphate fertilizer emerged as the promising management strategy for amelioration of arsenic contaminated soil of West Bengal through phyotoextraction by P. vittata.  相似文献   

7.
Arsenic is a common contaminant in soils and water. It is well established that the fern Pteris vittata L. is an As hyperaccumulator and therefore has potential to phyroremediate As-polluted soils. Also, it is accepted that rhizosphere microflora play an enhancing role in plant uptake of metallic elements from soils. Studies showed that hydroponiclly grown P. Vittata accumulated arsenite more than the arsenate form of As apparently because arsenate and phosphate are analogues and therefore its absorption is inhibited by phosphate. The objective of this study was to determine whether addition of five different arsenate-reducing bacteria would enhance arsenic uptake by P. vittata grown in arsenic polluted soils in afield experiment. Results showed that addition of the As reducing bacteria promoted the growth of P. vittata, increased As accumulation, activated soil insoluble As, and reduced As leaching compared to the untreated control. Plant biomass increased by 53% and As uptake by 44%. As leaching was reduced by 29% to 71% depending on the As reducing bacterium. The results in their entirety permitted some insight into the mechanisms by which the arsenate reducing bacteria enhanced the effectiveness of P. vittata to remove As from the polluted soil.  相似文献   

8.
砷、钙对蜈蚣草中金属元素吸收和转运的影响   总被引:10,自引:3,他引:10  
蜈蚣草是砷的超富集植物和钙质土壤的指示植物。本试验在砂培条件下,研究砷、钙对蜈蚣草吸收和转运必需金属元素K、Mg、Mn、Fe、Zn和Cu的影响。结果表明。提高营养液中的砷浓度显著降低根部Mg和Zn的吸收。但对根部其它元素的浓度没有明显影响;叶柄中的Mn和地上部的Fe浓度因介质中添加砷而显著减少。其它元素在地上部的分布不受抑制。添加砷限制Fe从地下部向地上部转运,但促进其从叶柄向羽叶中运输;另外,还显著促进Mn由叶柄向羽叶和Zn由根向羽叶的转运。提高钙处理浓度对蜈蚣草吸收Fe、Zn、Cu无显著影响,但显著限制K、Mg和Mn的吸收。Mn是研究的6种金属元素中惟一一种明显向地上部转运富集的元素。从根部到羽叶中。金属元素间的相关性增强,在根部Ca与各种金属元素都无相关性;叶柄中Ca和Fe浓度呈极显著正相关;在羽叶中,Ca与K、Mg、Mn和Zn浓度呈显著负相关。  相似文献   

9.
超富集植物蜈蚣草中砷化学形态的EXAFS研究   总被引:4,自引:0,他引:4  
采用同步辐射扩展X射线吸收精细结构(SREXAFS)技术研究了超富集植物蜈蚣草(PterisvittataL.)中As的化学形态及其在转运过程中的变化。结果表明,蜈蚣草中的As主要以As(Ⅲ)与O配位的形态存在。As(V)被植物吸收后,很快转化为As(Ⅲ),其转化过程主要发生在根部。As(Ⅲ)向地上部转运的过程中价态基本不变。在植物的根部和部分叶柄中存在少量与As-GSH相似的As-S结合方式,但是在As含量最高的羽叶中基本上未发现这种结合方式。与需要提取和分离过程的化学方法相比,采用EXAFS方法研究植物中的砷形态不需经过预分离或化学预处理就可以直接测定植物样品中元素的化学形态,因此可以避免样品预处理过程对As形态的干扰,并获得可靠的砷化学形态方面的信息。  相似文献   

10.
刈割对蜈蚣草的砷吸收和植物修复效率的影响   总被引:20,自引:1,他引:19  
以野生苗移栽的蜈蚣草为试材 ,通过盆栽试验研究了收获次数对蜈蚣草生长、砷吸收和植物修复效率的影响。结果表明 :在 3次收获中 ,随着收获次数的增加 ,不同砷浓度处理之间蜈蚣草生物量的差异逐步缩小 ;不加砷的对照处理中 ,每次收获后的砷吸收速率下降趋势 ,而在 3个加砷处理中 ,第 2次收获和第 3次收获的蜈蚣草的吸砷速率为 6 3~ 75 μg/ (plant· d)、4 4~ 5 5μg/ (plant· d) ,均显著高于第 1次收获时的吸收速率。表明多次收获并没有降低砷的积累速度。由此可见 ,通过适当增加蜈蚣草的收获次数是提高砷修复效率的一种策略  相似文献   

11.
超富集植物蜈蚣草中砷化学形态的EXAFS研究   总被引:6,自引:0,他引:6  
采用同步辐射扩展X射线吸收精细结构(SR EXAFS)技术研究了超富集植物蜈蚣草(Pteris vittata L.)中As的化学形态及其在转运过程中的变化.结果表明,蜈蚣草中的As主要以As(Ⅲ)与O配位的形态存在.As(Ⅴ)被植物吸收后,很快转化为As(Ⅲ),其转化过程主要发生在根部.As(Ⅲ)向地上部转运的过程中价态基本不变.在植物的根部和部分叶柄中存在少量与As-GSH相似的As-S结合方式,但是在As含量最高的羽叶中基本上未发现这种结合方式.与需要提取和分离过程的化学方法相比,采用EXAFS方法研究植物中的砷形态不需经过预分离或化学预处理就可以直接测定植物样品中元素的化学形态,因此可以避免样品预处理过程对As形态的干扰,并获得可靠的砷化学形态方面的信息.  相似文献   

12.
Heavy metal pollution of soils, caused by various anthropogenic sources, is a major environmental problem. Due to its cost-effectiveness and environ-mental friendliness, phytoremediation of arsenic-con- taminated soils has attracted more and more attention. An arsenic (As) hyperaccumulator, Chinese brake (Pteris vittata L.) was discovered by Chen et al. in China[1]. The field phytoremediation in Chenzhou City, Hunan Province has been successfully carried out by Chen et al. since 2000[2,3].…  相似文献   

13.
A greenhouse experiment evaluated the effect of phytoextraction of arsenic from a contaminated soil by Chinese Brake Fern (Pteris vittata L.) and its subsequent effects on growth and uptake of arsenic by rice (Oryza sativa L.) crop. Pteris vittata was grown for one or two growing cycles of four months each with two phosphate sources, using single super phosphate (SSP) and di-ammonium phosphate (DAP). Rice was grown on phytoextracted soils followed by measurements of biomass yield (grain, straw, and root), arsenic concentration and, uptake by individual plant parts. The biomass yield (grain, straw and rice) of rice was highest in soil phytoextracted with Pteris vittata grown for two cycles and fertilized with diammonium phosphate (DAP). Total arsenic uptake in contaminated soil ranged from 8.2 to 16.9 mg pot(-1) in first growing cycle and 5.5 to 12.0 mg pot(-1) in second growing cycle of Pteris vittata. There was thus a mean reduction of 52% in arsenic content of rice grain after two growing cycle of Pteris vittata and 29% after the one growing cycle. The phytoextraction of arsenic contaminated soil by Pteris vittata was beneficial for growing rice resulted in decreased arsenic content in rice grain of <1 ppm. There was a mean improvement in rice grain yield 14% after two growing cycle and 8% after the one growing cycle of brake fern.  相似文献   

14.
A pot experiment was conducted to explore the phytoremediation of a diphenylarsinic acid (DPAA)-spiked soil using Pteris vittata associated with exogenous Phyllobacterium myrsinacearum RC6b. Removal of DPAA from the soil, soil enzyme activities, and the functional diversity of the soil microbial community were evaluated. DPAA concentrations in soil treated with the fern or the bacterium were 35–47% lower than that in the control and were lowest in soil treated with P. vittata and P. myrsinacearum together. The presence of the bacterium added in the soil significantly increased the plant growth and DPAA accumulation. In addition, the activities of dehydrogenase and fluorescein diacetate hydrolysis and the average well-color development values increased by 41–91%, 37–78%, and 35–73%, respectively, in the treatments with P. vittata and/or P. myrsinacearum compared with the control, with the highest increase in the presence of P. vittata and P. myrsinacearum together. Both fern and bacterium alone greatly enhanced the removal of DPAA and the recovery of soil ecological function and these effects were further enhanced by P. vittata and P. myrsinacearum together. Our findings provide a new strategy for remediation of DPAA-contaminated soil by using a hyperaccumulator/microbial inoculant alternative to traditional physicochemical method or biological degradation.  相似文献   

15.
Abstract

Using biodegradable chelators to assist in phytoextraction may be an effective approach to enhance the heavy-metal remediation efficiencies of plants. A pot experiment was conducted to investigate the effects of ethylenediamine disuccinic acid (EDDS), citric acid (CA), and oxalic acid (OA) on the growth of the arsenic (As) hyperaccumulator Pteris vittata L., its arsenic (As), cadmium (Cd), and lead (Pb) uptake and accumulation, and soil microbial responses in multi-metal(loid)-contaminated soil. The addition of 2.5-mmol kg?1 OA (OA-2.5) produced 26.7 and 14.9% more rhizoid and shoot biomass, respectively compared with the control, while EDDS and CA treatments significantly inhibited plant growth. The As accumulation in plants after the OA-2.5 treatment increased by 44.2% and the Cd and Pb accumulation in plants after a 1-mmol kg?1 EDDS treatment increased by 24.5 and 19.6%, respectively. Soil urease enzyme activities in OA-2.5 treatment were significantly greater than those in the control and other chelator treatments (p?<?0.05). A PCR–denatured gradient gel electrophoresis analysis revealed that with the addition of EDDS, CA and OA enhanced soil microbial diversity. It was concluded that the addition of OA-2.5 was suitable for facilitating phytoremediation of soil As and did not have negative effects on the microbial community.  相似文献   

16.
Two hydroponic experiments were conducted to evaluate factors affecting plant arsenic (As) hyperaccumulation. In the first experiment; two As hyperaccumulators (Pteris vittata and P. cretica mayii) were exposed to 1 and 10 mg L(-1) arsenite (AsIII) and monomethyl arsenic acid (MMA) for 4 wk. Total As concentrations in plants (fronds and roots) and solution were determined In the second experiment P. vittata and Nephrolepis exaltata (a non-As hyperaccumulator) were exposed to 5 mgL(-1) arsenate (AsV) and 20 mgL(-1) AsIIIfor 1 and 15 d. Total As and AsIII concentrations in plants were determined Compared to P. cretica mayii, P. vittata was more efficient in arsenic accumulation (1075-1666 vs. 249-627mg kg(-1) As in the fronds) partially because it is more efficient in As translocation. As translocation factor (As concentration ratio in fronds to roots) was 3.0-5.6 for P. vittata compared to 0.1 to 4.8 for P. cretica. Compared to N. exaltata, P. vittata was significantly more efficient in arsenic accumulation (38-542 vs. 4.8-71 mg kg(-1) As in thefronds) as well asAs translocation (1.3-5.6 vs. 0.2-0.5). In addition, P. vittata was much more efficient in As reduction from AsV to AsIII (83-84 vs. 13-24% AsIII in the fronds). Little As reduction occurred after 1-d exposure to AsV in both species indicates that As reduction was not instantaneous even in an As hyperaccumulator. Our data were consistent with the hypothesis that both As translocation and As reduction are important for plant As hyperaccumulation.  相似文献   

17.
Chinese brake fern Pteris vittata hyperaccumulates arsenic in its fronds. In a study to identify brake fern cDNAs in arsenic resistance, we implicated a glutaredoxin, PvGRX5, because when expressed in Escherichia coli , it improved arsenic tolerance in recombinant bacteria. Here, we asked whether PvGRX5 transgenic expression would alter plant arsenic tolerance and metabolism. Two lines of Arabidopsis thaliana constitutively expressing PvGrx5 cDNA were compared with vector control and wild-type lines. PvGRX5-expressors were significantly more tolerant to arsenic compared with control lines based on germination, root growth and whole plant growth under imposed arsenic stress. PvGRX5-expressors contained significantly lower total arsenic compared with control lines following treatment with arsenate. Additionally, PvGRX5-expressors were significantly more efficient in their arsenate reduction in vivo . Together, our results indicate that PvGRX5 has a role in arsenic tolerance via improving arsenate reduction and regulating cellular arsenic levels. Paradoxically, our results suggest that PvGRX5 from the arsenic hyperaccumulator fern can be used in a novel biotechnological solution to decrease arsenic in crops.  相似文献   

18.
Aims: Bioremediation of highly arsenic (As)‐contaminated soil is difficult because As is very toxic for plants and micro‐organisms. The aim of this study was to investigate soil arsenic removal effects using poplar in combination with the inoculation of a plant growth–promoting rhizobacterium (PGPR). Methods and Results: A rhizobacterium D14 was isolated and identified within Agrobacterium radiobacter. This strain was highly resistant to arsenic and produced indole acetic acid and siderophore. Greenhouse pot bioremediation experiments were performed for 5 months using poplar (Populus deltoides LH05‐17) grown on As‐amended soils, inoculated with strain D14. The results showed that P. deltoides was an efficient arsenic accumulator; however, high As concentrations (150 and 300 mg kg?1) inhibited its growth. With the bacterial inoculation, in the 300 mg kg?1 As‐amended soils, 54% As in the soil was removed, which was higher than the uninoculated treatments (43%), and As concentrations in roots, stems and leaves were significantly increased by 229, 113 and 291%, respectively. In addition, the As translocation ratio [(stems + leaves)/roots = 0·8] was significantly higher than the uninoculated treatments (0·5). About 45% As was translocated from roots to the above‐ground tissues. The plant height and dry weight of roots, stems and leaves were all enhanced; the contents of chlorophyll and soluble sugar, and the activities of superoxide dismutase and catalase were all increased; and the content of a toxic compound malondialdehyde was decreased. Conclusions: The results indicated that the inoculation of strain D14 could contribute to the increase in the As tolerance of P. deltoides, promotion of the growth, increase in the uptake efficiency and enhancement of As translocation. Significance and Impact of the Study: The use of P. deltoides in combination with the inoculation of strain D14 provides a potential application for efficient soil arsenic bioremediation.  相似文献   

19.
研究硅肥对双季稻产量及土壤氮磷流失的影响,旨在为典型双季稻区施肥结构优化以及农田面源污染综合防控技术提供技术支撑.采用田间试验研究在相同氮磷肥基础上施0、750、1500、2250和3000 kg·hm-2 (T0、T1、T2、T3、T4)硅肥对双季稻产量和氮磷吸收、田面水氮磷含量及土壤有效硅、有机质、碱解氮和有效磷含量的影响.结果表明:与不施硅肥处理(T0)比较,早、晚稻季水稻稻谷分别增产2.2%~30.4%和3.9%~9.2%;早、晚稻籽粒氮素积累量增加2.4%~47.3%、磷素积累量增加2.2%~41.3%,秸秆氮素积累量增加0.4%~28.3%、磷素积累量增加5.1%~31.0%;施硅肥后第1天,施硅处理田面水总氮(TN)浓度较不施硅肥处理平均降低3.4%~28.8%、铵态氮(NH4+-N)降低10.4%~25.6%、总磷(TP)降低25.5%~29.2%、可溶性总磷(TDP)降低30.8%~38.0%;第45天后施硅各处理田面水总磷和可溶性总磷含量呈现上升趋势,并显著高于T0处理.施硅肥有利于提高土壤有效硅水平以及有机质和碱解氮含量,以T1处理效果最好,土壤速效磷含量随硅肥用量增加呈降低趋势.  相似文献   

20.
水稻土模拟土柱中肥料氮素的迁移转化特征   总被引:3,自引:1,他引:3  
张朝  车玉萍  李忠佩 《应用生态学报》2011,22(12):3236-3242
为了明确肥料氮素在模拟土柱中的迁移转化特征,通过布置室内模拟土柱试验,研究了3倍常规施肥水平下(360 mg·kg-1)水稻土中矿质氮的变化.结果表明: 不同处理、不同土层间NH4+-N和NO3--N含量差异显著.不施肥对照在整个培养期间养分含量变化不大,不同土层间亦没有显著性差异.施用尿素和硫铵后,土壤NH4+-N和NO3--N含量显著提高,尤其是0~50 mm土层内,分别达到186.0~2882.1 mg·kg-1和268.7~351.5 mg·kg-1,分别相当于对照的4.8~242倍和5.7~316倍,50 mm以下各土层与对照处理相似,表明肥料氮素的迁移转化主要发生在0~50 mm土层内,并且在培养的前14 d变化最大.整个培养期间不同土层内,硫铵处理不同矿质态氮含量是尿素处理的0.7~2.0倍,硝化率是尿素处理的0.9~1.4倍,表明硫铵在水稻土中的转化效率略高于尿素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号