首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 39-kDa DNA polymerase beta (beta-Pol) molecule can be readily converted into two constituent domains by mild proteolysis; these domains are represented in an 8-kDa N-terminal fragment and a 31-kDa C-terminal fragment [Kumar et al. (1990a) J. Biol. Chem. 265, 2124-2131]. Intact beta-Pol is a sequence-nonspecific nucleic acid-interactive protein that binds both double-stranded (ds) and single-stranded (ss) polynucleotides. These two activities appear to be contributed by separate portions of the enzyme, since the 31-kDa domain binds ds DNA but not ss DNA, and conversely, the 8-kDa domain binds ss DNA but not ds DNA [Casas-Finet et al. (1991) J. Biol. Chem. 266, 19618-19625]. Truncation of the 31-kDa domain at the N-terminus with chymotrypsin, to produce a 27-kDa fragment (residues 140-334), eliminated all DNA-binding activity. This suggested that the ds DNA-binding capacity of the 31-kDa domain may be carried in the N-terminal segment of the 31-kDa domain. We used CNBr to prepare a 16-kDa fragment (residues 18-154) that spans the ss DNA-binding region of the 8-kDa domain along with the N-terminal portion of the 31-kDa domain. The purified 16-kDa fragment was found to have both ss and ds polynucleotide-binding capacity. Thermodynamic binding properties for these activities are similar to those of the intact enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Rat DNA polymerase beta (beta-pol) is a 39-kDa protein organized in two tightly folded domains, 8-kDa N-terminal and 31-kDa C-terminal domains, connected by a short protease-sensitive region. The 8-kDa domain contributes template binding to the intact protein, and we now report that the 31-kDa C-terminal domain contributes catalytic activity. Our results show that this domain as a purified proteolytic fragment conducts DNA synthesis under appropriate conditions but the kcat is lower and primer extension properties are different from those of the intact enzyme. A proteolytic truncation of the 31-kDa catalytic domain fragment, to remove a 60-residue segment from the NH2-terminal end, results in nearly complete loss of activity, suggesting the importance of this segment. Overall, these results indicate that the domains of beta-pol have distinct functional roles, template binding and nucleotidyltransferase, respectively; yet, the intact protein is more active for each function than the isolated individual domain fragment.  相似文献   

3.
DNA polymerase beta (beta-polymerase) has been implicated in short-patch DNA synthesis in the DNA repair pathway known as base excision repair. The native 39 kDa enzyme is organized into four structurally and functionally distinct domains. In an effort to examine this enzyme as a potential therapeutic target, we analyzed the effect of various beta-polymerase domains on the activity of the enzyme in vitro. We show that the 14 kDa N-terminal segment of beta-polymerase, which binds to both single- and double-stranded DNA, but lacks DNA polymerase activity, inhibits beta-polymerase activity in vitro. Most importantly, the 8, 27 and 31 kDa domains of beta-polymerase do not inhibit beta-polymerase activity, demonstrating that the inhibition by the 14 kDa domain is specific. The inhibition of beta-polymerase activity in vitro is abolished by increasing the concentrations of both of the substrates (template-primer and deoxynucleoside triphosphate). In contrast, an in vitro base excision repair assay is inhibited in a domain specific manner by the 14 kDa domain even in the presence of saturating substrates. The inhibition of beta-polymerase activity by the 14 kDa domain appears specific to beta-polymerase as this domain does not inhibit either mammalian DNA polymerase alpha or Escherichia coli polymerase I (Klenow fragment). These data suggest that the 14 kDa domain could be used as a potential inhibitor of intracellular beta-polymerase and that it may provide a means for sensitizing cells to therapeutically relevant DNA damaging agents.  相似文献   

4.
We have investigated the influence of the N-terminal domain of the 94-kDa glucocorticoid receptor on the DNA:receptor interaction. An alpha-chymotrypsin-induced 39-kDa receptor fragment, containing the hormone and DNA binding domains, binds DNA with a reduced specificity compared to the intact 94-kDa receptor. Various footprinting assays did not reveal any qualitative differences when comparing the DNA contact points made by the two different receptor entities. Like the intact receptor, the 39-kDa receptor fragment binds as a dimer to DNA. Glutaraldehyde cross-linking demonstrated a difference in the protein:protein contacts of the two homodimers. Furthermore, the dimeric 94-kDa receptor did not recognize a half-DNA site, while the dissociated 94-kDa receptor dimer and the dimeric 39-kDa receptor fragment allowed binding to such a site. These results suggest that the loss of the N-terminal domain of the receptor affects the steric arrangement and/or rigidity of the two DNA binding domains of the receptor homodimer, resulting in a decreased DNA binding specificity of the 39-kDa receptor fragment.  相似文献   

5.
Interactions between rat polymerase beta (pol beta) and the template-primer, as well as gapped DNAs, were studied using the quantitative fluorescence titration technique. Stoichiometries of rat pol beta complexes with DNA substrates are much higher than stoichiometries predicted by the structures of co-crystals. The data can be understood in the context of the two single-stranded (ss)DNA-binding modes of the enzyme, the (pol beta)(16) and (pol beta)(5) binding modes, which differ by the number of nucleotides occluded by the protein. The 8-kDa domain of the enzyme engages the double-stranded (ds)DNA downstream from the primer, while the 31-kDa domain has similar affinity for the ss-ds DNA junction and the dsDNA. The affinity of rat pol beta for the gapped DNA is not affected by the size of the gap. The results indicate a plausible model for recognition of the gapped DNA by rat pol beta. The enzyme binds the ss-ds DNA junction of the gap using the 31-kDa domain. This binding induces an allosteric transition, resulting in the association of the 8-kDa domain with the dsDNA, leading to an amplification of the affinity for the gap. The 5' terminal phosphate, downstream from the primer, has little effect on the affinity, but affects the ssDNA conformation of the gap.  相似文献   

6.
Methylenetetrahydrofolate reductase commits tetrahydrofolate-bound one carbon units to use in the regeneration of the methyl group of adenosylmethionine (AdoMet) in eucaryotes and its activity is allosterically inhibited by AdoMet. Limited proteolysis and scanning transmission electron microscopy have been employed to show that the enzyme is a dimer of identical subunits and that each subunit is composed of spatially distinct domains with molecular masses of approximately 40 and 37 kDa (Matthews, R. G., Vanoni, M. A., Hainfeld, J. F., and Wall, J. (1984) J. Biol. Chem. 259, 11647-11650). We now report the use of the photoaffinity label 8-azido-S-adenosylmethionine (8-N3AdoMet) to locate the binding site for the allosteric inhibitor on the 37-kDa domain. In the absence of light, 8-N3AdoMet is itself an inhibitor of methylenetetrahydrofolate reductase activity, with a Ki value 4.8-fold higher than AdoMet, and like AdoMet it induces slow transitions between active and inactive forms. Photoaffinity labeling is dependent on irradiation with ultraviolet light and is prevented by AdoMet but not by ATP. Limited proteolysis of the photolabeled enzyme results in the formation of a labeled 37-kDa fragment which is further processed to a labeled 34-kDa fragment. On conversion of the 34-kDa fragment to a 31-kDa polypeptide, all label is lost, suggesting that the labeling is restricted to an approximately 3-kDa region near one end of the 37-kDa polypeptide. Limited proteolysis of the native enzyme, while completely desensitizing the enzyme to inhibition by AdoMet or 8-N3AdoMet, does not prevent subsequent photolabeling of the 37-kDa peptide fragment. This photolabeling does not occur in the presence of excess AdoMet. These latter experiments suggest that the desensitization of the enzyme eliminates the ability of allosteric effectors to stabilize an inactive form of the enzyme, but does not abolish specific binding of 8-N3AdoMet or AdoMet.  相似文献   

7.
Functional domain structure of calcineurin A: mapping by limited proteolysis   总被引:15,自引:0,他引:15  
M J Hubbard  C B Klee 《Biochemistry》1989,28(4):1868-1874
Limited proteolysis of calcineurin, the Ca2+/calmodulin-stimulated protein phosphatase, with clostripain is sequential and defines four functional domains in calcineurin A (61 kDa). In the presence of calmodulin, an inhibitory domain located at the carboxyl terminus is rapidly degraded, yielding an Mr 57,000 fragment which retains the ability to bind calmodulin but whose p-nitrophenylphosphatase is fully active in the absence of Ca2+ and no longer stimulated by calmodulin. Subsequent cleavage(s), near the amino terminus, yield(s) an Mr 55,000 fragment which has lost more than 80% of the enzymatic activity. A third, slower, proteolytic cleavage in the carboxyl-terminal half of the protein converts the Mr 55,000 fragment to an Mr 42,000 polypeptide which contains the calcineurin B binding domain and an Mr 14,000 fragment which binds calmodulin in a Ca2+-dependent manner with high affinity. In the absence of calmodulin, clostripain rapidly severs both the calmodulin-binding and the inhibitory domains. The catalytic domain is preserved, and the activity of the proteolyzed 43-kDa enzyme is increased 10-fold in the absence of Ca2+ and 40-fold in its presence. The calcineurin B binding domain and calcineurin B appear unaffected by proteolysis both in the presence and in the absence of calmodulin. Thus, calcineurin A is organized into functionally distinct domains connected by proteolytically sensitive hinge regions. The catalytic, inhibitory, and calmodulin-binding domains are readily removed from the protease-resistant core, which contains the calcineurin B binding domain. Calmodulin stimulation of calcineurin is dependent on intact inhibitory and calmodulin-binding domains, but the degraded enzyme lacking these domains is still regulated by Ca2+.  相似文献   

8.
Interactions of the 8-kDa domain of the rat pol β and the intact enzyme with the ssDNA have been studied, using the quantitative fluorescence titration technique. The 8-kDa domain induces large topological changes in the bound DNA structure and engages much larger fragments of the DNA than when embedded in the intact enzyme. The DNA affinity of the domain is predominantly driven by entropy changes, dominated by the water release from the protein. The thermodynamic characteristics dramatically change when the domain is embedded in the intact polymerase, indicating the presence of significant communication between the 8-kDa domain and the catalytic 31-kDa domain. The diminished water release from the 31-kDa domain strongly contributes to its dramatically lower DNA affinity, as compared to the 8-kDa domain. Unlike the 8-kDa domain, the DNA binding of the intact pol β is driven by entropy changes, originating from the structural changes of the formed complexes.  相似文献   

9.
The binding of pyridoxal analogues to the structural domains of pyridoxal kinase was studied by fluorescence spectroscopy and chromatographic techniques. Two fragments of 24 and 16 kDa, arising from limited proteolysis of the native enzyme, were separated by ion-exchange chromatography and used for binding studies with pyridoxal oxime. Fluorometric titrations yielded dissociation constants of 6 and 12.4 MicroM for pyridoxal oxime bound to the native enzyme and 24-kDa fragment, respectively. 4-(4-Azido-2-nitrophenyl)-pyridoxamine, a new photolabeling reagent, binds irreversibly to the kinase with concomitant loss of catalytic activity. The modified kinase (2.1 mol label/mol dimer) yields two fragments upon limited proteolysis with chymotrypsin. The two fragments were separated by reverse-phase HPLC and SDS/polyacrylamide gel electrophoresis. Radiolabeled ligand was detected only in the 24-kDa fragment. It is postulated that the pyridoxal binding site is located in the 24-kDa structural domain.  相似文献   

10.
C M Price  R Skopp  J Krueger  D Williams 《Biochemistry》1992,31(44):10835-10843
The 51-kDa telomere protein from Euplotes crassus binds to the extreme terminus of macronuclear telomeres, generating a very salt-stable telomeric DNA-protein complex. The protein recognizes both the sequence and the structure of the telomeric DNA. To explore how the telomere protein recognizes and binds telomeric DNA, we have examined the DNA-binding specificity of the purified protein using oligonucleotides that mimic natural and mutant versions of Euplotes telomeres. The protein binds very specifically to the 3' terminus of single-stranded oligonucleotides with the sequence (T4G4) > or = 3 T4G2; even slight modifications to this sequence reduce binding dramatically. The protein does not bind oligonucleotides corresponding to the complementary C4A4 strand of the telomere or to double-stranded C4A4.T4G4-containing sequences. Digestion of the telomere protein with trypsin generates an N-terminal protease-resistant fragment of approximately 35 kDa. This 35-kDa peptide appears to comprise the DNA-binding domain of the telomere protein as it retains most of the DNA-binding characteristics of the native 51-kDa protein. For example, the 35-kDa peptide remains bound to telomeric DNA in 2 M KCl. Additionally, the peptide binds well to single-stranded oligonucleotides that have the same sequence as the T4G4 strand of native telomeres but binds very poorly to mutant telomeric DNA sequences and double-stranded telomeric DNA. Removal of the C-terminal 15 kDa from the telomere protein does diminish the ability of the protein to bind only to the terminus of a telomeric DNA molecule.  相似文献   

11.
A1 is a core protein of the eukaryotic heterogeneous nuclear ribonucleoprotein complex and is under study here as a prototype single-stranded nucleic acid-binding protein. A1 is a two-domain protein, NH2-terminal and COOH-terminal, with highly conserved primary structure among vertebrate homologues sequenced to date. It is well documented that the NH2-terminal domain has single-stranded DNA and RNA binding activity. We prepared a proteolytic fragment of rat A1 representing the COOH-terminal one-third of the intact protein, the region previously termed COOH-terminal domain. This purified fragment of 133 amino acids binds to DNA and also binds tightly to the fluorescent reporter poly(ethenoadenylate), which is used to access binding parameters. In solution with 0.41 M NaCl, the equilibrium constant is similar to that observed with A1 itself, and binding is cooperative. The purified COOH-terminal fragment can be photochemically cross-linked to bound nucleic acid, confirming that COOH-terminal fragment residues are in close contact with the polynucleotide lattice. These binding results with isolated COOH-terminal fragment indicate that the COOH-terminal domain in intact A1 can contribute directly to binding properties. Contact between both COOH-terminal domain and NH2-terminal domain residues in an intact A1:poly(8-azidoadenylate) complex was confirmed by photochemical cross-linking.  相似文献   

12.
We generated fragments of simian virus 40 large tumor antigen (T antigen) by tryptic digestion and assayed them for helicase activity and helicase substrate (mostly single-stranded DNA)-binding activity in order to map the domain sites on the protein. The N-terminal 130 amino acids were not required for either activity, since a 76-kilodalton (kDa) fragment (amino acids 131 to 708) was just as active as intact T antigen. To map the helicase domain further, smaller tryptic fragments were generated. A 66-kDa fragment (131 to about 616) retained some activity, whereas a slightly smaller 62-kDa fragment (137 or 155 to 616) had none. This suggests that the minimal helicase domain maps from residue 131 to approximately residue 616. To map the helicase substrate-binding domain, we tested various fragments in a substrate-binding assay. The smallest fragment for which we could clearly demonstrate activity was a 46-kDa fragment (131 to 517). To determine the relationship between the helicase substrate domain and the origin-binding domain (131 to 257, minimal core region; 131 to 371, optimal region), we performed binding experiments with competitor DNAs present. We found that origin-containing double-stranded DNA was an excellent competitor of the binding of the helicase substrate to T antigen, suggesting that the two domains overlap. Therefore, full helicase activity requires at least a partial origin-binding domain as well as an active ATPase domain. Additionally, we found that the helicase substrate was a poor competitor of origin-binding activity, indicating that T antigen has a much higher affinity to origin sequences than to the helicase substrate.  相似文献   

13.
A proteolytic fragment of recA protein, missing about 15% of the protein at the C terminus, was found to promote assimilation of homologous single-stranded DNA into duplex DNA more efficiently than intact recA protein. This difference was not found if Escherichia coli single-stranded DNA binding protein was present. The ATPase activity of both intact recA protein and the fragment was identical. The difference in strand assimilation activity cannot be due to differences in single-stranded DNA affinity, since both the fragment and intact proteins bind to single-stranded DNA with nearly identical affinities. However, the fragment was found to bind double-stranded DNA more tightly and to aggregate more extensively than recA protein; both of these properties may be important in strand assimilation. Aggregation of the fragment was extensive in the presence of duplex DNA under the same condition where recA protein did not aggregate. The double-stranded DNA binding of both recA protein and the fragment responds to nucleotide cofactors in the same manner as single-stranded DNA binding, i.e. ADP weakens and ATP gamma S strengthens the association. The missing C-terminal region of recA protein includes a very acidic region that is homologous to other single-stranded DNA binding proteins and which has been implicated in DNA binding modulation. This C-terminal region may serve a similar function in recA protein, possibly inhibiting double-stranded DNA invasion. The possible role of the enhanced double-stranded DNA affinity of the fragment protein in the mechanism of strand assimilation is discussed.  相似文献   

14.
S S Sastry  K G Buki  E Kun 《Biochemistry》1989,28(13):5670-5680
Binding mechanisms of ADPR-transferase to restricted double-stranded DNA fragments of SV40 and pBR322 DNA were determined by nuclease protection techniques. Top and bottom strands of double-stranded DNA were identified by specific labeling with 32P. Protection against specific exonucleases identified binding of ADPR-transferase to DNA termini, whereas binding to internal regions of linear DNAs was probed by protection against endonucleases. ADPR-transferase protein protected against exonucleolytic attack from lambda exo and exoIII in all DNA fragments tested, demonstrating that the enzyme protein binds indiscriminately to all DNA termini. Extending earlier results [Sastry, S.S., & Kun, E. (1988) J. Biol. Chem. 263, 1505-1512], the modifying effect of the binding of ADPR-transferase to DNA induced changes in DNA conformation, as evident from altered pause sites that appeared following digestion of DNA fragments by lambda exonuclease in the presence of ADPR-transferase. In contrast to the nonselective binding of ADPR-transferase to DNA termini, ADPR-transferase conferred protection endonuclease attack (DNase I and micrococcal nuclease) only to the 209-bp EcoRI-PstI SV40 DNA fragment. These results indicate that binding of ADPR-transferase to relatively rare internal regions of restricted DNA fragments exhibits some degree of specificity. Specificity of binding appears to be related to the coincidental relative A+T-rich regions in DNA, and to DNA bending, both identified in the 209-bp SV40 DNA fragment. Synthetic polydeoxyribonucleotides containing dA-dT bind ADPR-transferase stronger than polydeoxyribonucleotides containing dG-dC. It was deduced from endonuclease protection patterns that binding of the enzyme protein leaves no defined footprints on the 209-bp SV40 DNA fragment, but there is significant modification of DNA structure following binding of the enzyme protein. Methylation protection assays and the prevention of the binding of ADPR-transferase to T4 DNA by its glucosylation indicate that the enzyme binds in the major groove of DNA. The 36-kDa A peptide fragment of ADPR-transferase [Buki, K. G., & Kun, E. (1988) Biochemistry 27, 5990-5995] exhibits the same protection against endonucleolytic enzymes as the intact ADPR-transferase molecule.  相似文献   

15.
The NS3 protein of hepatitis C virus (HCV) is a bifunctional protein containing a serine protease in the N-terminal one-third, which is stimulated upon binding of the NS4A cofactor, and an RNA helicase in the C-terminal two-thirds. In this study, a C-terminal hexahistidine-tagged helicase domain of the HCV NS3 protein was expressed in Escherichia coli and purified to homogeneity by conventional chromatography. The purified HCV helicase domain has a basal ATPase activity, a polynucleotide-stimulated ATPase activity, and a nucleic acid unwinding activity and binds efficiently to single-stranded polynucleotide. Detailed characterization of the purified HCV helicase domain with regard to all four activities is presented. Recently, we published an X-ray crystallographic structure of a binary complex of the HCV helicase with a (dU)(8) oligonucleotide, in which several conserved residues of the HCV helicase were shown to be involved in interactions between the HCV helicase and oligonucleotide. Here, site-directed mutagenesis was used to elucidate the roles of these residues in helicase function. Four individual mutations, Thr to Ala at position 269, Thr to Ala at position 411, Trp to Leu at position 501, and Trp to Ala at position 501, produced a severe reduction of RNA binding and completely abolished unwinding activity and stimulation of ATPase activity by poly(U), although the basal ATPase activity (activity in the absence of polynucleotide) of these mutants remained intact. Alanine substitution at Ser-231 or Ser-370 resulted in enzymes that were indistinguishable from wild-type HCV helicase with regard to all four activities. A mutant bearing Phe at Trp-501 showed wild-type levels of basal ATPase, unwinding activity, and single-stranded RNA binding activity. Interestingly, ATPase activity of this mutant became less responsive to stimulation by poly(U) but not to stimulation by other polynucleotides, such as poly(C). Given the conservation of some of these residues in other DNA and RNA helicases, their role in the mechanism of unwinding of double-stranded nucleic acid is discussed.  相似文献   

16.
Thrombospondin is a major glycoprotein of the platelet alpha-granule and is secreted during platelet activation. Several protease-resistant domains of thrombospondin mediate its interactions with components of the extracellular matrix including fibronectin, collagen, heparin, laminin, and fibrinogen. Thrombospondin, as well as fibronectin, is composed of several discretely located biologically active domains. We have characterized the thrombospondin binding domains of plasma fibronectin and determined the binding affinities of the purified domains; fibronectin has at least two binding sites for thrombospondin. Thrombospondin bound specifically to the 29-kDa amino-terminal heparin binding domain of fibronectin as well as to the 31-kDa non-heparin binding domain located within the larger 40-kDa carboxy-terminal fibronectin domain generated by chymotrypsin proteolysis. Platelet thrombospondin interacted with plasma fibronectin in a specific and saturable manner in blot binding as well as solid-phase binding assays. These interactions were independent of divalent cations. Thrombospondin bound to the 29-kDa fibronectin heparin binding domain with a Kd of 1.35 x 10(-9) M. The Kd for the 31-kDa domain of fibronectin was 2.28 x 10(-8) M. The 40-kDa carboxy-terminal fragment bound with a Kd of 1.65 x 10(-8) M. Heparin, which binds to both proteins, inhibited thrombospondin binding to the amino-terminal domain of fibronectin by more than 70%. The heparin effect was less pronounced with the non-heparin binding carboxy-terminal domain of fibronectin. By contrast, the binding affinity of the thrombospondin 150-kDa domain, which itself lacked heparin binding, was not affected by the presence of heparin. Based on these data, we conclude that thrombospondin binds with different affinities to two distinct domains in the fibronectin molecule.  相似文献   

17.
Villin is an F-actin binding protein located in the microfilament bundle of intestinal epithelial cell microvilli. Extensive in vitro proteolysis with Staphylococcus aureus V8 protease results in the production of a stable domain (apparent Mr 44000) which can be isolated due to its Ca2+-dependent interaction with G-actin bound to immobilized DNase-I, the standard procedure for the purification of villin. This 44-kDa fragment retains a single Ca2+ binding site with an apparent Kd = 2 X 10(-6) M, binds to G-actin, and inhibits the rate of actin polymerization. However, the 44-kDa domain does not shown any Ca2+-activated severing activity nor does it compete with villin for F-actin binding. These results suggest that villin contains three domains: headpiece containing an F-actin binding site, 44-kDa fragment containing a G-actin binding site, and an amino-terminal fragment responsible for the Ca2+-dependent severing activity.  相似文献   

18.
A Kumar  S H Wilson 《Biochemistry》1990,29(48):10717-10722
A1 is a major core protein of the mammalian hnRNP complex, and as a purified protein of approximately 34 kDa, A1 is a strong single-stranded nucleic acid binding protein. Several lines of evidence suggest that the protein is organized in discrete domains consisting of an N-terminal segment of approximately 22 kDa and a C-terminal segment of approximately 12 kDa. Each of these domains as a purified fragment is capable of binding to both ssDNA and RNA. We report here that A1 and its C-terminal domain fragment are capable of potent strand-annealing activity for base-pair complementary single-stranded polynucleotides of both RNA and DNA. This effect is not stimulated by ATP. Compared with A1 and the C-terminal fragment, the N-terminal domain fragment has negligible annealing activity. These results indicate that A1 has biochemical activity consistent with a strand-annealing role in relevant reactions, such as pre-mRNA splicing.  相似文献   

19.
Limited proteolysis can be used to remove either 42 or 62 amino acids at the COOH terminus of the 18,873-dalton Escherichia coli single-stranded DNA binding protein (SSB). Since poly(dT), but not d(pT)16, increases the rate of this reaction, it appears that cooperative SSB binding to single-stranded DNA (ssDNA) is associated with a conformational change that increases the exposure of the COOH terminus to proteolysis. As a result of this DNA-induced conformational change, we presume that the COOH-terminal region of SSB will become more accessible for interacting with other proteins that utilize the SSB:ssDNA complex as a substrate and that are involved in E. coli DNA replication, repair, and recombination. Removal of this COOH-terminal domain from SSB results in a stronger helix-destabilizing protein which suggests this region may be important for controlling the ability of SSB to denature double-stranded DNA. Since similar results have previously been reported for the bacteriophage T4 gene 32 protein (Williams, K.R., and Konigsberg, W. (1978) J. Biol. Chem. 253, 2463-2470; Hosoda, J., and Moise, H. (1978) J. Biol. Chem. 253, 7547-7555), the acidic, COOH-terminal domains of these two single-stranded DNA binding proteins may be functionally homologous. Preliminary evidence is cited that suggests other prokaryotic and eukaryotic DNA binding proteins may contain similar functional domains essential for controlling their ability to invade double helical DNA.  相似文献   

20.
Zheng W  Liao JC  Brooks BR  Doniach S 《Proteins》2007,67(4):886-896
Hepatitis C virus NS3 helicase is an enzyme that unwinds double-stranded polynucleotides in an ATP-dependent reaction. It provides a promising target for small molecule therapeutic agents against hepatitis C. Design of such drugs requires a thorough understanding of the dynamical nature of the mechanochemical functioning of the helicase. Despite recent progress, the detailed mechanism of the coupling between ATPase activity and helicase activity remains unclear. Based on an elastic network model (ENM), we apply two computational analysis tools to probe the dynamical mechanism underlying the allosteric coupling between ATP binding and polynucleotide binding in this enzyme. The correlation analysis identifies a network of hot-spot residues that dynamically couple the ATP-binding site and the polynucleotide-binding site. Several of these key residues have been found by mutational experiments as functionally important, while our analysis also reveals previously unexplored hot-spot residues that are potential targets for future mutational studies. The conformational changes between different crystal structures of NS3 helicase are found to be dominated by the lowest frequency mode solved from the ENM. This mode corresponds to a hinge motion of the highly flexible domain 2. This motion simultaneously modulates the opening/closing of the domains 1-2 cleft where ATP binds, and the domains 2-3 cleft where the polynucleotide binds. Additionally, a small twisting motion of domain 1, observed in both mode 1 and the computed ATP binding induced conformational change, fine-tunes the binding affinity of the domains 1-3 interface for the polynucleotide. The combination of these motions facilitates the translocation of a single-stranded polynucleotide in an inchworm-like manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号