首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis that the dose-limiting side effects of PDE4 inhibitors could be mediated via the central nervous system prompted us to design and synthesize a hydrophilic piperidine analog to improve the side effect profile of Ariflo 1, which is an orally active second-generation PDE4 inhibitor. During evaluation of various water-soluble piperidine analogs, 2a-b, 11b-14b, and 17a showed therapeutic potential in cross-species comparison studies. The following three findings were obtained: (1) The hydroxamic acid group, a well known metal chelator, caused a marked increase of inhibitory activity. (2) Water-soluble piperidine analogs lacked the configurational isomerism of Ariflo 1 without loss of inhibitory activity. (3) Replacement of the 4-methoxy residue with a difluoromethoxy residue led to an increase of in vivo potency. Structure-activity relationships are presented. Single-dose rat pharmacokinetic data for 11b, 12b, and 17a are also presented.  相似文献   

2.
Structure-activity relationships at the 2alpha-position of the piperidine ring of the trans-4,5-dimethyl-4-(3-hydroxyphenyl)piperidine mu-opioid antagonist series were investigated. This study showed that only small linear alkyl groups (methyl, propyl) are tolerated at the 2alpha-position of the piperidine ring of this series.  相似文献   

3.
The relationship between chemical modifications of arginine derivatives and inhibitory activity to horse serum cholinesterase (BuChE) was investigated. It provided a new insight into the topography of the active site of BuChE. 1) BuChE has the hydrophobic binding pocket, the depth of which corresponds to the length of ethylpiperidine. 2) In the opposite side to the hydrophobic binding pocket, BuChE has a certain entity which repulses carboxyl group at the 2-position of piperidine of L-arginine piperidine amide. 3) The P site of BuChE can allow 4-propyl and 4-phenyl group attached to piperidine. Comparison of the results with those of thrombin and trypsin clearly revealed similarities and dissimilarities among BuChE, trypsin, and thrombin in the active site topography, and hence, we introduce a new selective inhibitor for BuChE, N alpha-dansyl-L-arginine 4-phenylpiperidine amide. It inhibits BuChE strongly (Ki = 0.016 microM), whereas it inhibits trypsin, thrombin, plasmin, and glandular kallikrein only weakly and shows actually no inhibition on acetylcholinesterase from the human erythrocyte. In addition, the new inhibitor becomes highly fluorescent when bound with BuChE, indicating that the compound is an ideal probe of the interactions of BuChE as well as a titrant of it.  相似文献   

4.
A new class of 4-(aminoheterocycle)piperidine derived 1,3,4 trisubstituted pyrrolidine CCR5 antagonists is reported. Compound 4a is shown to have good binding affinity (1.8 nM) and antiviral activity in PBMC's (IC(95)=50 nM). Compound 4a also has improved PK properties relative to 1.  相似文献   

5.
Protease inhibitors are known to suppress basal, fluoride-, and hormone-stimulated adenylate cyclase activities. The thrombin inhibitor, dansyl-arginyl-(4'-ethyl)piperidine amide (DAPA), also specifically inhibits the binding of gonadotropins to their receptors. Our studies were undertaken to find a concentration of DAPA that would specifically inhibit gonadotropin-stimulated adenylate cyclase without significantly altering basal, fluoride-, isoproterenol-, or prostaglandin E1-stimulated cyclase. Basal adenylate cyclase activity was not inhibited by DAPA in either human chorionic gonadotropin (hCG)- or follicle-stimulating hormone (FSH)-responsive rat ovarian plasma membranes. Human chorionic gonadotropin-stimulated cyclase was completely inhibited by DAPA at a concentration of 2.96 mM; the ID50 was 1.32 mM. Follicle-stimulating hormone-stimulated cyclase was completely inhibited by a DAPA concentration of 4.44 mM, and the ID50 was 1.75 mM. Dansyl-arginyl-(4'-ethyl)piperidine amide (2.96 mM) inhibited isoproterenol-, prostaglandin E1-, and fluoride-stimulated cyclase in hCG-responsive membranes by 11%, 28%, and 35%, respectively. Dansyl-arginyl-(4'-ethyl)piperidine amide (4.44 mM) inhibited fluoride- and prostaglandin-stimulated cyclase in FSH-responsive membranes by 10% and 11%, respectively. The data show that appropriate concentrations of DAPA can antagonize gonadotropin-stimulated adenylate cyclase while only minimally affecting fluoride- and other receptor-activated cyclase activities.  相似文献   

6.
Novel piperidine and piperazine derivatives have been designed and tested as inhibitors of LTA4 hydrolase (LTA4H). Most potent compounds showed good potency in both enzymatic and functional human whole blood assay. Crystallography studies further confirmed observed structure–activity relationship and LTA4H binding mode for analogs from the piperidine series.  相似文献   

7.
SAR about the piperidine core in a series of MC4R agonists is described. A number of alkyl substituents that furnish compounds with good affinity and functional potency are reported.  相似文献   

8.
A novel class of N-substituted 4-hydrazino piperidine derivatives were designed, synthesized and evaluated for DPP IV inhibition. The SAR studies on the N-substituted piperidine led to the discovery of compound 22e as a potent DPP IV inhibitor (IC50 88 nM), which is highly selective over other peptidases. In vivo efficacy indicates that compound 22e stimulates insulin release in response to glucose load and improves glucose tolerance in n5-STZ and Zucker Diabetic Fatty (ZDF) rats.  相似文献   

9.
The identification, optimization, and structure-activity relationship (SAR) of small-molecule CCR4 antagonists is described. An initial screening hit with micromolar potency was identified that was optimized to sub-micromolar binding potency by enantiomer resolution, halogenation of the naphthalene ring, and extension of the alkyl chain linker between the central piperidine ring and the terminal aryl group. An antagonist was identified that showed good cross-reactivity against the mouse receptor and inhibited CCR4-based cell recruitment in dose-dependent fashion.  相似文献   

10.
Phthalocyanine mediated photosensitization of 2'-deoxyguanosine (dG) in oxygen saturated aqueous solution has previously been shown to result in the addition of molecular oxygen to the guanine base generating the 4R* and 4S* diastereoisomers of 4,8-dihydro-4-hydroxy-8-oxo-2'-deoxyguanosine (dO) (the asterisk denotes unambiguous assignment of the 4R and 4S diastereoisomers). The data presented here show that the same guanine modified bases are generated in a 1:1 ratio when thymidylyl-(3',5')-2'-deoxyguanosine (d(TpG)) is similarly photo-oxidized. These modified dinucleoside monophosphates, labelled d(TpO)-A and -B, have been isolated by high performance liquid chromatography and characterized by proton NMR spectrometry, fast atom bombardment mass spectrometry, and enzymatic digestions. Photosensitization in D2O instead of H2O leads to an increase in the rate of d(TpO) formation that is consistent with a type II (singlet oxygen) reaction mechanism. Three interesting properties of these modified dinucleoside monophosphates are: i) the rate of their digestion with spleen phosphodiesterase is greatly reduced relative to d(TpG), ii) they are not digested by snake venom phosphodiesterase, and iii) they are stable to 1.0 M piperidine at 90 degrees C for 30 min. The latter observation indicates that 4,8-dihydro-4-hydroxy-8-oxoguanine is not a base lesion responsible for the strand breaks observed following hot piperidine treatment of DNA exposed to type II photosensitizers or chemically generated singlet oxygen.  相似文献   

11.
The synthesis, SAR, pharmacokinetic profile, and modeling studies of both monocyclic and fused pyrazoles containing substituted N-arylpiperidinyl P4 moieties that are potent and selective factor Xa inhibitors will be discussed. Fused pyrazole analog 16a, with a 2'-methylsulfonylphenyl piperidine P4 group, was shown to be the best compound in this series (FXa Ki = 0.35 nM) based on potency, selectivity, and pharmacokinetic profile.  相似文献   

12.
In this paper, we report the synthesis of diastereomerically pure N-(4-substituted-2,4-diaminobutanoyl)piperidines. These compounds were prepared to investigate the influence of the 4-substitution on the dipeptidyl peptidase II (DPP II) activity and selectivity of the parent N-(2,4-diaminobutanoyl)piperidine. The (4S)-methyl compound showed subnanomolar inhibition, comparable with the parent compound. The (4R)-methyl group or bigger substituents decreased the activity.  相似文献   

13.
High-throughput screening of the GSK compound collection against the P2Y(1) receptor identified a novel series of tetrahydro-4-quinolinamine antagonists. Optimal substitution around the piperidine group was pivotal for ensuring activity. An exemplar analog from this series was shown to inhibit platelet aggregation.  相似文献   

14.
Small molecules behaving as CD4 mimics were previously reported as HIV-1 entry inhibitors that block the gp120–CD4 interaction and induce a conformational change in gp120, exposing its co-receptor-binding site. A structure–activity relationship (SAR) study of a series of CD4 mimic analogs was conducted to investigate the contribution from the piperidine moiety of CD4 mimic 1 to anti-HIV activity, cytotoxicity, and CD4 mimicry effects on conformational changes of gp120. In addition, several hybrid molecules based on conjugation of a CD4 mimic analog with a selective CXCR4 antagonist were also synthesized and their utility evaluated.  相似文献   

15.
A novel series of histamine H3 receptor antagonists based on the 4-[(1H-imidazol-4-yl)methyl]piperidine template displaying low CYP2D6 and CYP3A4 inhibitory profiles has been identified. Structural features responsible for the reduction of P450 activity, a typical liability of 4-substituted imidazoles, have been established.  相似文献   

16.
Replacement of the flexible connecting chains between the piperidine moiety and an aromatic group in previous CCR5 antagonists with heterocycles, such as pyrazole and isoxazole, provided potent CCR5 antagonists with excellent anti-HIV-1 activity in vitro. SAR studies revealed optimal placement of an unsubstituted nitrogen atom in the heterocycle to be meta to the bond connected to the 4-position of piperidine. Truncation of a benzyl group to a phenyl group afforded compounds with dramatically improved oral bioavailability, albeit with reduced activity.  相似文献   

17.
Adding 3-hydroxymethyl N-methyl piperidine (4-chlorophenoxy) acetate, A, at increasing doses in the incubation medium leads to an increase in glycerol release from white adipocytes or brown adipose tissue. This stimulation is dose-dependent and optimal with 10(-6) M.  相似文献   

18.
A series of N-substituted 4-alkylpiperidine hydroxamic acids, corresponding to the basic structure of histone deacetylase (HDAC) inhibitors (zinc binding moiety-linker-capping group) has been previously reported by our group. Linker length and aromatic capping group connection were systematically varied to find the optimal geometric parameters. A new series of submicromolar inhibitors was thus identified, which showed antiproliferative activity on HCT-116 colon carcinoma cells. We report here the second part of the strategy used in our research group to find a new class of HDAC inhibitors, namely the SAR study for the compounds bearing a sulfonyl group on the piperidine nitrogen. In the present work, we have considered both sulfonamides and sulfonyl ureas.  相似文献   

19.
4-Benzyl-1-[4-(1H-imidazol-4-yl)but-3-ynyl]piperidine (8) has been identified as a potent antagonist of the NR1A/2B subtype of the NMDA receptor. When dosed orally, this compound potentiates the effects of L-DOPA in the 6-hydroxydopamine-lesioned rat, a model of Parkinson's disease.  相似文献   

20.
Based on the hypothesis that the dose-limiting side effects of PDE4 inhibitors could be mediated via the central nervous system (CNS), design and synthesis of a hydrophilic analogue is considered to be one approach to improving the side-effect profile of Ariflo 1. Water-soluble piperidine derivatives were found to possess therapeutic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号