首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A molecular understanding of porcine reproduction is of biological interest and economic importance. Our Midwest Consortium has produced cDNA libraries containing the majority of genes expressed in major female reproductive tissues, and we have deposited into public databases 21,499 expressed sequence tag (EST) gene sequences from the 3 end of clones from these libraries. These sequences represent 10,574 different genes, based on sequence comparison among these data, and comparison with existing porcine ESTs and genes indicate as many as 4652 of these EST clusters are novel. In silico analysis identified sequences that are expressed in specific pig tissues or organs and confirmed the broad expression in pig for many genes ubiquitously expressed in human tissues. Furthermore, we have developed computer software to identify sequence similarity of these pig genes with their human counterparts, and to extract the mapping information of these human homologues from genome databases. We demonstrate the utility of this software for comparative mapping by localizing 61 genes on the porcine physical map for Chromosomes (Chrs) 5, 10, and 14. The following Accession numbers were assigned to our deposited sequences: BF701840 – BF704551, BF708383, BF708386 – BF713604, BG322266 – BG322271, BI398567 – BI405235, BQ597354 – BQ605166.  相似文献   

2.
The public EST (expressed sequence tag) databases represent an enormous but heterogeneous repository of sequences, including many from a broad selection of plant species and a wide range of distinct varieties. The significant redundancy within large EST collections makes them an attractive resource for rapid pre-selection of candidate sequence polymorphisms. Here we present a strategy that allows rapid identification of candidate SNPs in barley (Hordeum vulgare L.) using publicly available EST databases. Analysis of 271,630 EST sequences from different cDNA libraries, representing 23 different barley varieties, resulted in the generation of 56,302 tentative consensus sequences. In all, 8171 of these unigene sequences are members of clusters with six or more ESTs. By applying a novel SNP detection algorithm (SNiPpER) to these sequences, we identified 3069 candidate inter-varietal SNPs. In order to verify these candidate SNPs, we selected a small subset of 63 present in 36 ESTs. Of the 63 SNPs selected, we were able to validate 54 (86%) using a direct sequencing approach. For further verification, 28 ESTs were mapped to distinct loci within the barley genome. The polymorphism information content (PIC) and nucleotide diversity () values of the SNPs identified by the SNiPpER algorithm are significantly higher than those that were obtained by random sequencing. This demonstrates the efficiency of our strategy for SNP identification and the cost-efficient development of EST-based SNP-markers.The first two authors contributed equally to this work  相似文献   

3.
4.
Single nucleotide polymorphisms (SNPs) are useful for characterizing allelic variation, for genome-wide mapping, and as a tool for marker-assisted selection. Discovery of SNPs through de novo sequencing is inefficient within cultivated tomato (Lycopersicon esculentum Mill.) because the polymorphism rate is more than ten-fold lower than the sequencing error rate. The availability of expressed sequence tag (EST) data has made it feasible to discover putative SNPs in silico prior to experimental verification. By exploiting redundancy among EST data available for different varieties among 148,373 tomato ESTs, we have identified candidate SNPs for use within cultivated germplasm pools. 1,245 contigs having three EST sequences of Rio Grande and three EST sequences of TA496 were used for SNP discovery. We detected 1 SNP for every 8,500 bases analyzed, with 101 candidate SNPs in 44 genes identified. Sixty-six SNPs could be recognized by restriction enzymes, and subsequent experimental verification using restriction digestion or CEL I digestion confirmed 83% of the putative polymorphisms tested. SNPs between TA496 and Rio Grande have a high probability (53%) of detecting polymorphisms between other L. esculentum varieties. Twenty-six SNPs in 18 unigenes were mapped to specific chromosomes. Two SNPs, LEOH23 and LEOH37, were shown to be linked to quantitative trait loci contributing to fruit color within elite breeding populations. These results suggest that the growing databases of DNA sequence will yield information that facilitates improvement within the germplasm pools that have contributed to productive modern varieties.  相似文献   

5.
A total of 944 expressed sequence tags (ESTs) generated 2212 EST loci mapped to homoeologous group 1 chromosomes in hexaploid wheat (Triticum aestivum L.). EST deletion maps and the consensus map of group 1 chromosomes were constructed to show EST distribution. EST loci were unevenly distributed among chromosomes 1A, 1B, and 1D with 660, 826, and 726, respectively. The number of EST loci was greater on the long arms than on the short arms for all three chromosomes. The distribution of ESTs along chromosome arms was nonrandom with EST clusters occurring in the distal regions of short arms and middle regions of long arms. Duplications of group 1 ESTs in other homoeologous groups occurred at a rate of 35.5%. Seventy-five percent of wheat chromosome 1 ESTs had significant matches with rice sequences (E < or = e(-10)), where large regions of conservation occurred between wheat consensus chromosome 1 and rice chromosome 5 and between the proximal portion of the long arm of wheat consensus chromosome 1 and rice chromosome 10. Only 9.5% of group 1 ESTs showed significant matches to Arabidopsis genome sequences. The results presented are useful for gene mapping and evolutionary and comparative genomics of grasses.  相似文献   

6.
7.
8.
Determined sequences of 285 randomly selected clones in a 3-directed cDNA library of Aspergillus niger could identify expressed seqeunce tags (ESTs) of genes highly expressed. One EST appeared seven times, one six times, one five times, four three times and 12 twice. Out of these 19 ESTs, ten were identified in GenBank, but none was of A. niger, suggesting that there are a lot of unidentified genes highly expressed in A. niger.  相似文献   

9.
10.
Microsatellites, or simple sequence repeats (SSRs), are usually regarded as the markers of choice in population genetics research because they exhibit high variability. The development cost of these markers is usually high. In addition, microsatellite primers developed for one species often do not cross-amplify in related species, requiring separate development for each species. However, microsatellites found in expressed sequence tags (ESTs) might better cross-amplify as they reside in or near conserved coding DNA. In this study, we identified 14 Pinus taeda (loblolly pine) EST-SSRs from public EST databases and tested for their cross-species transferability to P. contorta ssp. latifolia, P. ponderosa, and P. sylvestris. As part of our development of a P. contorta microsatellite set, we also compared their transferability to that of 99 traditional microsatellite markers developed in P. taeda and tested on P. contorta ssp. latifolia. Compared to traditional microsatellites, EST-SSRs had higher transfer rates across pine species; however, the level of polymorphism of microsatellites derived from ESTs was lower. Sequence analyses revealed that the frequencies of insertions/deletions and base substitutions were lower in EST-SSRs than in other types of microsatellites, confirming that EST-SSRs are more conserved than traditional SSRs. Our results also provide a battery of 23 polymorphic, robust microsatellite primer pairs for lodgepole pine.Communicated by O. Savolainen  相似文献   

11.
Plant genomics projects involving model species and many agriculturally important crops are resulting in a rapidly increasing database of genomic and expressed DNA sequences. The publicly available collection of expressed sequence tags (ESTs) from several grass species can be used in the analysis of both structural and functional relationships in these genomes. We analyzed over 260000 EST sequences from five different cereals for their potential use in developing simple sequence repeat (SSR) markers. The frequency of SSR-containing ESTs (SSR-ESTs) in this collection varied from 1.5% for maize to 4.7% for rice. In addition, we identified several ESTs that are related to the SSR-ESTs by BLAST analysis. The SSR-ESTs and the related sequences were clustered within each species in order to reduce the redundancy and to produce a longer consensus sequence. The consensus and singleton sequences from each species were pooled and clustered to identify cross-species matches. Overall a reduction in the redundancy by 85% was observed when the resulting consensus and singleton sequences (3569) were compared to the total number of SSR-EST and related sequences analyzed (24606). This information can be useful for the development of SSR markers that can amplify across the grass genera for comparative mapping and genetics. Functional analysis may reveal their role in plant metabolism and gene evolution.  相似文献   

12.
Summary Psathyrostachys juncea (synonymous to Elymus junceus; 2n=2x=14, NN) has unique biotic and abiotic attributes that could contribute towards wheat improvement. The effectiveness of such an intergeneric hybridization program depends greatly on being able to establish diagnostic markers of the alien chromosomes. Isoelectric focusing (IEF) analyses of six enzyme systems have identified five biochemical markers — malate dehydrogenase (MDH), esterase (EST), shikimate dehydrogenase (SKDH), phosphoglucomutase (PGM), and -amylase (-AMY) — to be of positive diagnostic value; glucosephosphate isomerase (GPI) banding profiles were of no definite value in the background of Triticum aestivum cvs Chinese Spring and Seri-82, the potential recipients of Ps. juncea chromosomes. The Giemsa C-banding karyotype distinctively separates the Ps. Juncea chromosomes from each other and from those of T. aestivum with little banding site polymorphisms prevalent among its accessions analyzed, indicating the usefulness of C-bands as cytological markers.  相似文献   

13.
14.
15.
A total of 6,230 EST sequences were produced from 7,561 clones in a cDNA library generated from grapevine (Vitis vinifera cv. ‘Summer Black’) flower and fruit tissues in this study. After cluster and assembly analysis of the datasets, 3,582 unigenes (GenBank accession numbers GW836604–GW840185) were established, among which 381 were new grapevine EST sequences. Out of the 381 new ESTs, 289 could be mapped on the 19 grapevine chromosomes. 913 unique ESTs with known or putative functions were assigned to 11 putative cellular roles. 540 potentially workable grapevine EST-SSRs were developed from 3,582 unigenes and about 42.6% of these unigenes were identified as true-to-type SSR loci and could amplify polymorphic bands from 22 individual plants of V. vinifera L, indicating that grapevine EST datasets are a valuable source for the development of functional simple sequence repeat (SSR) markers.  相似文献   

16.

Background

Most studies inferring species phylogenies use sequences from single copy genes or sets of orthologs culled from gene families. For taxa such as plants, with very high levels of gene duplication in their nuclear genomes, this has limited the exploitation of nuclear sequences for phylogenetic studies, such as those available in large EST libraries. One rarely used method of inference, gene tree parsimony, can infer species trees from gene families undergoing duplication and loss, but its performance has not been evaluated at a phylogenomic scale for EST data in plants.

Results

A gene tree parsimony analysis based on EST data was undertaken for six angiosperm model species and Pinus, an outgroup. Although a large fraction of the tentative consensus sequences obtained from the TIGR database of ESTs was assembled into homologous clusters too small to be phylogenetically informative, some 557 clusters contained promising levels of information. Based on maximum likelihood estimates of the gene trees obtained from these clusters, gene tree parsimony correctly inferred the accepted species tree with strong statistical support. A slight variant of this species tree was obtained when maximum parsimony was used to infer the individual gene trees instead.

Conclusion

Despite the complexity of the EST data and the relatively small fraction eventually used in inferring a species tree, the gene tree parsimony method performed well in the face of very high apparent rates of duplication.
  相似文献   

17.
To appraise the usefulness of the enzyme-linked immunosorbent assay (ELISA) technique for examining the serological diversity of slow-growing rhizobia, twelve diverse strains from three countries were examined with four antisera. Eleven of the strains were from the cowpea miscellany, and the twelfth was a Rhizobium japonicum strain. Some cowpea strains showed no antigenic relatedness with each other while others were closely related, and some showed a greater affinity with the R. japonicum strain than with other cowpea strains. All of the strains showed antigenic homology to an isolate from a wild Arachis sp., while two strains isolated from adjacent plants of the same cultivar had little homology. These patterns ofrelatedness and diversity clearly demonstrated the utility of the ELISA method, and so it was used to examine 53 strains isolated from cowpeas grown at three West African locations, Maradi (Niger), Ibadan and Onne (Nigeria). Broad ranges of serological diversity were found in the rhizobia at each location, moreover each population had its own general characteristics. Maradi strains were highly reactive with the five antisera used, Onne strains less so, and Ibadan strains even less so. ELISA reactivity correlated with colony morphology but not with nodulation potential.  相似文献   

18.
The -esterase cluster of D. melanogaster comprises two tandemly duplicated genes. Est6 encodes the well-characterized 5 gene, but the product of the second gene, denoted EstP, had not previously been identified. Here we show that the EstP gene encodes the carboxylesterase EST7. Expression of EstP using the Baculovirus system led to production of a carboxylesterase biochemically indistinguishable from EST7. Furthermore, a naturally occurring EstP variant produces greatly reduced amounts of EstP mRNA and no detectable EST7 protein. Finally, introduction of a wild-type copy of EstP by germline transformation into the variant strain confers the wild-type EST7 phenotype. We show that EST7 differs from EST6 in its substrate and inhibitor specificities and tissue distribution. Germline transformation experiments show that EstP expression is controlled by sequences located between 192 bp 5 and 609 bp 3 of the EstP coding region. Data comparisons with other drosophilid esterases suggest that the site of expression, and hence the function, of EST7 has been conserved across lineages in both the subgenera Drosophila and Sophophora.  相似文献   

19.
20.
Summary Wheat gliadin proteins are coded by clusters of genes (complex loci) located on the short arms of chromosomes of homoeologous groups 1 and 6 in bread (6x) and durum (4x) wheats. The proteins expressed by the various complex loci have been designated gliadin blocks. In a survey of accessions from the Germplasm Institute (C.N.R., Bari, Italy) collection, several different accessions have been found that lack particular blocks of proteins (null alleles). In some bread wheat accessions, seeds do not express gliadins that are coded by chromosomes 1D and 6A in normal cultivars. Similarly, some durum wheat accessions lack -gliadin components coded for by genes on chromosomes 1A and 1B. The missing proteins do not result from the absence of whole chromosomes, but may be the consequence of partial deletion of these genes at a complex locus or result from their silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号