首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Processing pathway of Escherichia coli 16S precursor rRNA.   总被引:5,自引:2,他引:3       下载免费PDF全文
Immediate precursors of 16S rRNA are processed by endonucleolytic cleavage at both 5' and 3' mature termini, with the concomitant release of precursor fragments which are further metabolized by both exo- and endonucleases. In wild-type cells rapid cleavages by RNase III in precursor-specific sequences precede the subsequent formation of the mature ends; mature termini can, however, be formed directly from pre-16S rRNA with no intermediate species. The direct maturation is most evident in a strain deficient in RNase III, and the results in whole cells are consistent with results from maturation reactions in vitro. Thus, maturation does not require cleavages within the double-stranded stems that enclose mature rRNA sequences in the pre-16S rRNA.  相似文献   

2.
Two regions of mouse rDNA were sequenced. One contained the last 323 nucleotides of the external transcribed spacer and the first 595 nucleotides of 18S rRNA; the other spanned the entire internal transcribed spacer and included the 3' end of 18S rRNA, 5.8S rRNA, and the 5' end of 28S rRNA. The mature rRNA sequences are very highly conserved from yeast to mouse (unit evolutionary period, the time required for a 1% divergence of sequence, was 30 X 10(6) to 100 X 10(6) years). In 18S rRNA, at least some of the evolutionary expansion and increase in G + C content is due to a progressive accretion of discrete G + C-rich insertions. Spacer sequence comparisons between mouse and rat rRNA reveal much more extensive and frequent insertions and substitutions of G + C-rich segments. As a result, spacers conserve overall G + C richness but not sequence (UEP, 0.3 X 10(6) years) or specific base-paired stems. Although no stems analogous to those bracketing 16S and 23S rRNA in Escherichia coli pre-rRNA are evident, certain features of the spacer regions flanking eucaryotic mature rRNAs are conserved and could be involved in rRNA processing or ribosome formation. These conserved regions include some short homologous sequence patterns and closely spaced direct repeats.  相似文献   

3.
4.
5.
6.
7.
8.
The initial endonuclease cleavage site in 32 S pre-rRNA (precursor to rRNA) is located within the rate rDNA sequence by S1-nuclease protection mapping of purified nucleolar 28 S rRNA and 12 S pre-rRNA. The heterogeneous 5'- and 3'-termini of these rRNA abut and map within two CTC motifs in tSi2 (internal transcribed spacer 2) located at 50-65 and 4-20 base-pairs upstream from the homogeneous 5'-end of the 28 S rRNA gene. These results show that multiple endonuclease cleavages occur at CUC sites in tSi2 to generate 28 S rRNA and 12 S pre-rRNA with heterogeneous 5'- and 3'-termini, respectively. These molecules have to be processed further to yield mature 28 S and 5.8 S rRNA. Thermal-denaturation studies revealed that the base-pairing association in the 12 S pre-rRNA:28 S rRNA complex is markedly stronger than that in the 5.8 S:28 S rRNA complex. The sequence of about one-quarter (1322 base-pairs) of the 5'-part of the rat 28 S rDNA was determined. A computer search reveals the possibility that the cleavage sites in the CUC motifs are single-stranded, flanked by strongly base-paired GC tracts, involving tSi2 and 28 S rRNA sequences. The subsequent nuclease cleavages, generating the termini of mature rRNA, seem to be directed by secondary-structure interactions between 5.8 S and 28 S rRNA segments in pre-rRNA. An analysis for base-pairing among evolutionarily conserved sequences in 32 S pre-rRNA suggests that the cleavages yielding mature 5.8 S and 28 S rRNA are directed by base-pairing between (i) the 3'-terminus of 5.8 S rRNA and the 5'-terminus of 28 S rRNA and (ii) the 5'-terminus of 5.8 S rRNA and internal sequences in domain I of 28 S rRNA. A general model for primary- and secondary-structure interactions in pre-rRNA processing is proposed, and its implications for ribosome biogenesis in eukaryotes are briefly discussed.  相似文献   

9.
10.
11.
The 16S rRNA species in bacterial precursor rRNAs is followed by two evolutionarily conserved features: (i) a double-stranded stem formed by complementary sequences adjacent to the 5' and 3' ends of the 16S rRNA; and (ii) a 3'-transfer RNA sequence. To assess the possible role of these features, plasmid constructs with precursor-specific features deleted were tested for their capacity to form mature rRNA. Stem-forming sequences were dispensable for both 5' and 3' terminus formation; whereas an intact spacer tRNA positioned greater than 24 nucleotides downstream of the 16S RNA sequence was required for correct 3'-end maturation. These results suggest that spacer tRNA at an appropriate location helps form a conformation obligate for pre-rRNA processing, perhaps by binding to a nascent binding site in preribosomes. Thus, spacer tRNAs may be an obligate participant in ribosome formation.  相似文献   

12.
Ordered processing of Escherichia coli 23S rRNA in vitro.   总被引:6,自引:2,他引:4       下载免费PDF全文
In an RNase III-deficient strain of E. coli 23S pre-rRNA accumulates unprocessed in 50S ribosomes and in polysomes. These ribosomes provide a substrate for the analysis of rRNA maturation in vitro. S1 nuclease protection analysis of the products obtained in in vitro processing reactions demonstrates that 23S rRNA processing is ordered. The double stranded stem of 23S rRNA is cleaved by RNase III in vitro to two intermediate RNAs at the 5' end and one at the 3' end. Mature termini are then produced by other enzyme(s) in a soluble protein fraction from wild-type cells. The nature of the reaction at the 5' end is not clear, but the reaction at the 3' end is exonucleolytic, producing three heterogeneous mature termini. The two reactions are coordinated; 3' end maturation progresses concurrently with cleavages at the 5' end. Two results suggest a possible link between final maturation and translation: in vitro, mature termini are formed efficiently in the presence of additives required for protein synthesis; and all the processing intermediates detected from in vitro reactions are also found in polysomes from wild-type cells.  相似文献   

13.
Location of the initial cleavage sites in mouse pre-rRNA.   总被引:8,自引:6,他引:8       下载免费PDF全文
The locations of three cleavages that can occur in mouse 45S pre-rRNA were determined by Northern blot hybridization and S1 nuclease mapping techniques. These experiments indicate that an initial cleavage of 45S pre-rRNA can directly generate the mature 5' terminus of 18S rRNA. Initial cleavage of 45S pre-rRNA can also generate the mature 5' terminus of 5.8S rRNA, but in this case cleavage can occur at two different locations, one at the known 5' terminus of 5.8S rRNA and another 6 or 7 nucleotides upstream. This pattern of cleavage results in the formation of cytoplasmic 5.8S rRNA with heterogeneous 5' termini. Further, our results indicate that one pathway for the formation of the mature 5' terminus of 28S rRNA involves initial cleavages within spacer sequences followed by cleavages which generate the mature 5' terminus of 28S rRNA. Comparison of these different patterns of cleavage for mouse pre-rRNA with that for Escherichia coli pre-rRNA implies that there are fundamental differences in the two processing mechanisms. Further, several possible cleavage signals have been identified by comparing the cleavage sites with the primary and secondary structure of mouse rRNA (see W. E. Goldman, G. Goldberg, L. H. Bowman, D. Steinmetz, and D. Schlessinger, Mol. Cell. Biol. 3:1488-1500, 1983).  相似文献   

14.
Maturation of the large subunit rRNAs includes a series of cleavages that result in removal of the internal transcribed spacer (ITS2) that separates mature 5.8S and 25/28S rRNAs. Previous work demonstrated that formation of higher order secondary structure within the assembling pre-ribosomal particle is a prerequisite for accurate and efficient pre-rRNA processing. To date, it is not clear which specific sequences or secondary structures are required for processing. Two alternative secondary structure models exist for Saccharomyces cerevisiae ITS2. Chemical and enzymatic structure probing and phylogenetic comparisons resulted in one structure (Yeh & Lee, J Mol Biol, 1990, 211:699-712) referred to here as the "hairpin model." More recently, an alternate folded structure was proposed (Joseph et al., Nucleic Acids Res, 1999, 27:4533-4540), called here the "ring model." We have used a functional genetic assay to examine the potential significance of these predicted structures in processing. Our data indicate that elements of both structural models are important in efficient processing. Mutations that prevent formation of ring-specific structures completely blocked production of mature 25S rRNA, whereas those that primarily disrupt hairpin elements resulted in reduced levels of mature product. Based on these results, we propose a dynamic conformational model for the role of ITS2 in processing: Initial formation of the ring structure may be required for essential, early events in processing complex assembly and may be followed by an induced transition to the hairpin structure that facilitates subsequent processing events. In this model, yeast ITS2 elements may provide in cis certain of the functions proposed for vertebrate U8 snoRNA acting in trans.  相似文献   

15.
16.
17.
18.
In Rhodobacter capsulatus and Rhizobium leguminosarum, an internal transcribed spacer consisting of helices 9 and 10 is removed during 23S rRNA processing, which leads to the occurrence of a 5.8S-like rRNA. The particular rRNA maturation steps are not known, with exception of the initial RNase III cleavage in helix 9. We found that GC-rich stem-loop structures of helix 9, which are released by RNase III, are immediately degraded. The degradation of helix 10 is slower and its kinetics differs in both species. Nevertheless, the helix 10 processing mechanism is conserved and includes cleavages by RNase E.  相似文献   

19.
20.
The nucleolus, the compartment in which the large ribosomal RNA precursor (pre-rRNA) is synthesized, processed through a series of nucleolytic cleavages and modifications into the mature 18S, 5.8S, and 28S rRNAs, and assembled with proteins to form ribosomal subunits, also contains many small nucleolar RNAs (snoRNAs). We present evidence that the first processing event in mouse rRNA maturation, cleavage within the 5' external transcribed spacer, is facilitated by at least four snoRNAs: U14, U17(E1), and E3, as well as U3. These snoRNAs do not augment this processing by directing 2'-O-methylation of the pre-rRNA. A macromolecular complex in which this 5'ETS processing occurs may then function in the processing of 18S rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号