首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among animals, insects have the highest mass-specific metabolic rates; yet, during intermolt development the tracheal respiratory system cannot meet the increased oxygen demand of older stage insects. Using locomotory performance indices, whole body respirometry, and X-ray imaging to visualize the respiratory system, we tested the hypothesis that due to the rigid exoskeleton, an increase in body mass during the intermolt period compresses the air-filled tracheal system, thereby, reducing oxygen delivery capacity in late stage insects. Specifically, we measured air sac ventilation frequency, size, and compressibility in both the abdomen and femur of early, middle, and late stage sixth instar Schistocerca americana grasshoppers. Our results show that late stage grasshoppers have a reduced air sac ventilation frequency in the femur and decreased convective capacities in the abdomen and femur. We also used X-ray images of the abdomen and femur to calculate the total proportion of tissue dedicated to respiratory structure during the intermolt period. We found that late stage grasshoppers had a lower proportion of their body dedicated to respiratory structures, especially air sacs, which convectively ventilate the tracheal system. These intermolt changes make oxygen delivery more challenging to the tissues, especially critical ones such as the jumping muscle. Indeed, late stage grasshoppers showed reduced jump frequencies compared to early stage grasshoppers, as well as decreased mass-specific CO2 emission rates at 3 kPa PO2. Our findings provide a mechanism to explain how body mass changes during the intermolt period reduce oxygen delivery capacity and alter an insect’s life history.  相似文献   

2.
The respiratory system of insects has evolved to satisfy the oxygen supply during rest and energetically demanding processes such as locomotion. Flapping flight in particular is considered a key trait in insect evolution and requires an increase in metabolic activity of 10-15-fold the resting metabolism. Two major trade-offs are associated with the extensive development of the tracheal system and the function of spiracles in insects: the risk of desiccation because body water may leave the tracheal system when spiracles open for gas exchange and the risk of toxic tracheal oxygen levels at low metabolic activity. In resting animals there is an ongoing debate on the function and evolution of spiracle opening behavior, focusing mainly on discontinuous gas exchange patterns. During locomotion, large insects typically satisfy the increased respiratory requirements by various forms of ventilation, whereas in small insects such as Drosophila diffusive processes are thought to be sufficient. Recent data, however, have shown that during flight even small insects employ ventilatory mechanisms, potentially helping to balance respiratory currents inside the tracheal system. This review broadly summarizes our current knowledge on breathing strategies and spiracle function in the genus Drosophila, highlighting the gas exchange strategies in resting, running and flying animals.  相似文献   

3.
How does body size affect the structure and gas exchange capacities of insect tracheae? Do insects become more oxygen-limited as they grow? We addressed these questions by measuring the dimensions of two transverse tracheae within the abdomen of American locusts of different ages, and evaluating the potential for diffusion or convection to provide adequate gas exchange. The grasshopper abdomen has longitudinal tracheae that run along the midgut, heart, nerve cord, and lateral body wall. Transverse tracheae run from each spiracle to the longitudinal tracheae. Dorsal air sacs attach near each spiracle. In both transverse tracheae studied, diffusive capacities increased more slowly than metabolic rates with age, and calculated oxygen gradients necessary to supply oxygen by diffusion increased exponentially with age. However, surgical studies demonstrated that transport of gas through these transverse tracheae occurred by convection, at least in adults. Convective capacities paralleled metabolic rates with age, and the calculated pressure gradients required to sustain oxygen consumption rates by convection were independent of age. Thus, in growing grasshoppers, tracheal capacities matched tissue oxygen needs. Our morphological and physiological data together suggest that use of convection allows older grasshoppers to overcome potential limitations on size imposed by diffusion through tracheal systems.  相似文献   

4.
How does body size affect the structure and gas exchange capacities of insect tracheae? Do insects become more oxygen-limited as they grow? We addressed these questions by measuring the dimensions of two transverse tracheae within the abdomen of American locusts of different ages, and evaluating the potential for diffusion or convection to provide adequate gas exchange. The grasshopper abdomen has longitudinal tracheae that run along the midgut, heart, nerve cord, and lateral body wall. Transverse tracheae run from each spiracle to the longitudinal tracheae. Dorsal air sacs attach near each spiracle. In both transverse tracheae studied, diffusive capacities increased more slowly than metabolic rates with age, and calculated oxygen gradients necessary to supply oxygen by diffusion increased exponentially with age. However, surgical studies demonstrated that transport of gas through these transverse tracheae occurred by convection, at least in adults. Convective capacities paralleled metabolic rates with age, and the calculated pressure gradients required to sustain oxygen consumption rates by convection were independent of age. Thus, in growing grasshoppers, tracheal capacities matched tissue oxygen needs. Our morphological and physiological data together suggest that use of convection allows older grasshoppers to overcome potential limitations on size imposed by diffusion through tracheal systems.  相似文献   

5.
Insects that are small or exhibit low metabolic rates are considered to not require active ventilation to augment diffusive gas exchange. Some pupae with low metabolic rates exhibit abdominal pumping, a behaviour that is known to drive tracheal ventilation in the adults of many species. However, previous work on pupae suggests that abdominal pumping may serve a non-respiratory role. To study the role of abdominal pumping in pupa of the beetle Zophobas morio, we visualized tracheal dynamics with X-rays while simultaneously measuring haemolymph pressure, abdominal movement, and CO2 emission. Pupae exhibited frequent tracheal compressions that were coincident with both abdominal pumping and pulsation of pressure in the haemolymph. However, more than 63% of abdominal pumping events occurred without any tracheal collapse and hence ventilation, suggesting that the major function of the abdominal pump is not respiratory. In addition, this study shows that the kinematics of abdominal pumping can be used to infer the status of the spiracles and internal behaviour of the tracheal system.  相似文献   

6.
研究了普通齿蛉Neoneuromus ignobilis Navás幼虫的呼吸系统及其呼吸行为。结果表明:普通齿蛉幼虫为全气门式(10对气门)呼吸系统,前中胸、中后胸之间、腹部8节各有1对气门,腹部8节各有气管鳃1对,前6对细短,管状,有较短绒毛,后2对气管鳃较粗长,呈羽毛状。腹部1~7节各有1对毛簇,第8腹节无毛簇。侧纵干气管较粗,4束,自前胸前缘部分成左右2组,每组两根侧纵干气管,向胸腹部延伸,二级气管分别伸达各个气门和毛簇,腹部每节由毛簇处的二级气管分支而来的三级气管相连或延伸至消化道等处。气管鳃中无气管。有毛簇呼吸、气门呼吸和体壁呼吸3种呼吸方式,在水中以毛簇呼吸为主,在陆上进行气门呼吸和体壁呼吸。  相似文献   

7.
Different possibilities of coordination between circulation, respiration and abdominal movements were found in pupae of Pieris brassicae, Tenebrio molitor, Galleria mellonella and Leptinotarsa decemlineata. Coordination principles depend on metabolic rate: the need to support circulation with abdominal movements appears only at higher metabolic rates. Integration between different abdominal movements and circulation depends on species, on physiological state and, supposedly, on internal morphology. At low metabolic rates, there is no need for a very intensive hemolymph flow, and the dorsal vessel is capable of initiating and/or maintaining necessary hemolymph flow. Starting from a certain metabolic level, it is possible that the abdomen is used to accelerate hemolymph flow in the case of a large amount of hemolymph. When the necessary flow speed has been reached, relatively weak pulsation of the dorsal vessel with accessory pulsatile organs and diaphragms can easily maintain the necessary flow intensity. Heart activity may sometimes be initiated by abdominal movements via cardiac reflex or mechanical excitation. Sometimes, when heart function is weakened by histolysis, the abdomen may temporarily take over the main circulatory function or occasionally contribute to acceleration of low-speed hemolymph flow. In this case the functions are simultaneous and may be triggered by some mediator(s). In active adult insects the whole body is moving, and hence hemolymph circulates and the tracheal system is effectively ventilated by a whole body ensemble consisting of the dorsal vessel, moving organs, body appendages and accessory pulsatile organs. The mechanism of autocirculation (analogous to autoventilation in gas exchange) is a probable mechanism in circulation in adult insects.  相似文献   

8.
研究雷氏黄萤Luciola leii Fu and Ballantyne幼虫的呼吸系统及其呼吸行为。结果表明:雷氏黄萤幼虫的呼吸系统中只有气管无气囊。前胸、中胸和后胸均分布有气门,无气管鳃,腹部1~8节分布有气门和气管鳃,气门腔基部和气管鳃基部相连,呈"√"状,气管鳃内气管与气门气管相连通。雷氏黄萤幼虫的呼吸行为分为3种:利用胸部气门呼吸、腹部气门呼吸和气管鳃呼吸,其中以腹部气门呼吸为主。  相似文献   

9.
Many flightless beetles like the large apterous dung beetle Circellium bacchus, possess a subelytral cavity (SEC) providing an extra air space below the elytra which connects to the tracheal system (TS) via metathoracic and abdominal spiracles. By measuring subelytral and intratracheal pressure as well as body movements and gas exchange simultaneously in a flow-through setup, we investigated the contribution of convection on Circellium respiratory gas exchange.No constriction phase was observed. TS and SEC pressures were always around atmospheric values. During interburst phase open abdominal spiracles and a leaky SEC led to small CO2-peaks on a continuous CO2 baseline, driven by intermittent positive tracheal pressure peaks in anti-phase with small negative subelytral pressure peaks caused by dorso-ventral tergite action.Spiracle opening was accompanied by two types of body movements. Higher frequency telescoping body movements at the beginning of opening resulted in high amplitude SEC and TS pressure peaks. High frequency tergite movements caused subelytral pressure peaks and led to a saw tooth like CO2 release pattern in a burst. We propose that during the burst open mesothoracic spiracles increase the compliance of the subelytral cavity allowing big volumes of tracheal air being pulled out by convection.  相似文献   

10.
Spiracles and the tracheal system of insects allow effective delivery of respiratory gases. During development, holometabolous insects encounter large changes in the functional morphology of gas exchange structures. To investigate changes in respiratory patterns during development, CO2-release was measured in larvae, pre-pupae and pupae of Samia cynthia (Lepidoptera, Saturniidae). Gas exchange patterns showed great variability. Caterpillars had high metabolic rates and released carbon dioxide continuously. Pre-pupae and pupae showed typical discontinuous gas exchange cycles (DGC) at reduced metabolic rates. Changes in gas exchange patterns can partly be explained with low metabolic rates during pupation. Sequential blocking of spiracles in pre-pupae and pupae reduced spiracle conductance with tracheal conductance remaining unaffected. Analysis of gas exchange patterns indicates that caterpillars and pre-pupae use more than 14 spiracles simultaneously while pupae only use 8 to 10 spiracles. Total conductance is not a simple multiple of single spiracles, but may be gradually adaptable to gas exchange demands. Surprisingly, moth pupae showed a DGC if all except one spiracle were blocked. The huge conductance of single spiracles is discussed as a pre-adaptation to high metabolic demands at the beginning and the end of the pupal as well as in the adult stage.  相似文献   

11.
Spiracles and the tracheal system of insects allow effective delivery of respiratory gases. During development, holometabolous insects encounter large changes in the functional morphology of gas exchange structures. To investigate changes in respiratory patterns during development, CO2-release was measured in larvae, pre-pupae and pupae of Samia cynthia (Lepidoptera, Saturniidae). Gas exchange patterns showed great variability. Caterpillars had high metabolic rates and released carbon dioxide continuously. Pre-pupae and pupae showed typical discontinuous gas exchange cycles (DGC) at reduced metabolic rates. Changes in gas exchange patterns can partly be explained with low metabolic rates during pupation. Sequential blocking of spiracles in pre-pupae and pupae reduced spiracle conductance with tracheal conductance remaining unaffected. Analysis of gas exchange patterns indicates that caterpillars and pre-pupae use more than 14 spiracles simultaneously while pupae only use 8 to 10 spiracles. Total conductance is not a simple multiple of single spiracles, but may be gradually adaptable to gas exchange demands. Surprisingly, moth pupae showed a DGC if all except one spiracle were blocked. The huge conductance of single spiracles is discussed as a pre-adaptation to high metabolic demands at the beginning and the end of the pupal as well as in the adult stage.  相似文献   

12.
Adaptation to diverse habitats has prompted the development of distinct organs in different animals to better exploit their living conditions. This is the case for the respiratory organs of arthropods, ranging from tracheae in terrestrial insects to gills in aquatic crustaceans. Although Drosophila tracheal development has been studied extensively, the origin of the tracheal system has been a long-standing mystery. Here, we show that tracheal placodes and leg primordia arise from a common pool of cells in Drosophila, with differences in their fate controlled by the activation state of the wingless signalling pathway. We have also been able to elucidate early events that trigger leg specification and to show that cryptic appendage primordia are associated with the tracheal placodes even in abdominal segments. The association between tracheal and appendage primordia in Drosophila is reminiscent of the association between gills and appendages in crustaceans. This similarity is strengthened by the finding that homologues of tracheal inducer genes are specifically expressed in the gills of crustaceans. We conclude that crustacean gills and insect tracheae share a number of features that raise the possibility of an evolutionary relationship between these structures. We propose an evolutionary scenario that accommodates the available data.  相似文献   

13.
Sound radiation was studied in males of Tympanistalna gastrica St»l during a spontaneous song with the characteristics of the conspecific calling song, which was elicited as an after effect of brain stimulation. The song contains two different kinds of sound pulses: 1) loud clicks and 2) soft pulses, presenting different spectra.The timbals, abdomen, tympana, folded membranes and opercula were tested as potential radiators of the song. The experiments included: 1) probe microphone measurements of the spectra of loud clicks and soft pulses in several positions around the animal and close to the body surface; 2) measurements of the spectra before and after covering with vaseline different structures that might be relevant to the radiation of the song, and manipulations of the size and shape of the abdominal and thoracic portions of the tracheal air sac; 3) laser vibrometry measurements in different parts of the body, both during singing and external sound stimulation.The data obtained demonstrate that several structures contribute differently to the radiation of clicks and soft pulses: 1) The timbals are the main radiators at frequencies around the dominant spectral peak, 10–11 kHz in clicks and 12–13 kHz in soft pulses; 2) The tympana are important in radiation of frequencies below and above the timbal peak, especially during the generation of soft pulses; 3) The abdomen is more activated during the generation of clicks, and is more important in the radiation of low frequencies around 5 kHz.Manipulations of the body cavities showed that neither the thoracic nor the abdominal portions of the air sac are critical for the song tuning. The large abdominal cavity do not seem to work as a Helmholtz resonator. We found no evidence that resonances inside this cavity should play an important role in enhancing sound radiation in T. gastrica.  相似文献   

14.
Since insect blood usually lacks oxygen-carrying pigments it has always been assumed that respiratory needs are met by diffusion in the gas-filled lumen of their tracheal systems. Outside air enters the tracheal system through segmentally arranged spiracles, diffuses along tubes of cuticle secreted by tracheal epithelia and then to tissues through tracheoles, thin walled cuticle tubes that penetrate between cells. The only recognized exceptions have been blood cells (hemocytes), which are not tracheated because they float in the hemolymph. In caterpillars, anoxia has an effect on the structure of the hemocytes and causes them to be released from tissues and to accumulate on thin walled tracheal tufts near the 8th (last) pair of abdominal spiracles. Residence in the tufts restores normal structure. Hemocytes also adhere to thin-walled tracheae in the tokus compartment at the tip of the abdomen. The specialized tracheal system of the 8th segment and tokus may therefore be a lung for hemocytes, a novel concept in insect physiology. Thus, although as a rule insect tracheae go to tissues, this work shows that hemocytes go to tracheae.  相似文献   

15.
The insect tracheal system is a unique respiratory system, designed for maximum oxygen delivery at high metabolic demands, e.g. during activity and at high ambient temperatures. Therefore, large safety margins are required for tracheal and spiracular conductance. Spiracles are the entry to the tracheal system and play an important role in controlling discontinuous gas exchange (DGC) between tracheal system and atmosphere in moth pupae. We investigated the effect of modulated metabolic rate (by changing ambient temperature) and modulated spiracular conductance (by blocking all except one spiracles) on gas exchange patterns in Samia pupae. Both, spiracle blocking and metabolic rates, affected respiratory behavior in Samia cynthia pupae. While animals showed discontinuous gas exchange cycles at lower temperatures with unblocked spiracles, the respiratory patterns were cyclic at higher temperatures, with partly blocked spiracles or a combination of these two factors. The threshold for the transition from a discontinuous (DGC) to a cyclic gas exchange (cycGE) was significantly higher in animals with unblocked spiracles (18.7 nmol g−1 min−1 vs. 7.9 nmol g−1 min−1). These findings indicate an important influence of spiracle conductance on the DGC, which may occur mostly in insects showing high spiracular conductances and low metabolic rates.  相似文献   

16.
氧是机体进行新陈代谢和维持生存的必要因素。低氧环境在自然界普遍存在,也是许多重大疾病(如癌症)发生过程中基本的病理生理特征。生物包括昆虫在其生存和发育过程中经常面对低氧的挑战,它们发展出了各自的适应策略以求得生存和繁荣壮大。昆虫对于低氧环境适应包括在气管系统通气量、气体交换模式、体型大小和发育时间等生理机制上的改变。为揭示昆虫低氧适应机制,研究人员针对不同昆虫采用了来自人工选择或者自然选择的品系(种群),使用了基因芯片表达和转录组测序、基因组重测序技术和基因操作等技术。基于这些方法研究发现,在分子机制方面,昆虫可以通过抑制能量代谢、提高氧气利用率来适应低氧环境;还可以通过胰岛素通路、低氧诱导因子(HIF)信号通路等来调节自身代谢活动从而适应环境低氧;除此之外,昆虫的气管系统可以在基因调控下通过代偿性生理和形态变化来适应低氧环境。昆虫低氧适应机制的研究为探求昆虫数亿年进化过程中体形改变、物种形成、种群动态等提供提供新的视野,也增进对动物应对低氧或缺氧机理的深入理解,特别是为研究人类重大疾病的发生提供重要启示。  相似文献   

17.
Energy metabolism in animals has been largely studied in relation to exogenous sources of variation. However, because they give insight into the relationship between whole metabolism and lower organizational levels such as organs and tissues, examination of endogenous determinants of metabolism other than body mass is itself very important. We studied the multivariate association of body parts and several aspects of energy metabolism in an insect, the nymphs of the sand cricket, Gryllus firmus. By using a variety of both univariate and multivariate techniques, we explored the resultant variance-covariance matrix to build a path diagram with latent variables. After controlling for body mass, we found a significant canonical correlation between metabolism and morphology. According to the factor loadings and path coefficients, the most important contributions of morphology to the correlation were thorax and abdomen size measures, whereas the most important metabolic contribution was resting metabolism. Activity metabolism was mostly explained by body mass rather than body parts, which could be a result of resting rates being chronic consequences of the functioning of the metabolic machinery that the insect must maintain.  相似文献   

18.
Scorpions successfully inhabit some of the most arid habitats on earth. During exposure to desiccating stress water is mobilized from the scorpion hepatopancreas to replenish the hemolymph and retain hydration and osmotic stability. Carbohydrate catabolism is advantageous under these conditions as it results in high metabolic water production rate, as well as the release of glycogen-bound water. Hypothesizing that metabolic fuel utilization in scorpions is regulated in order to boost body water management under stressful conditions we used a comparative approach, studying energy metabolism during prolonged desiccation in four species varying in resistance performance. We used respirometry for calculating respiratory gas exchange ratios, indicative of metabolic fuel utilization, and measured metabolic fuel contents in the scorpion hepatopancreas. We found that hydrated scorpions used a mixture of metabolic fuels (respiratory exchange rates, RER~0.9), but a shift towards carbohydrate catabolism was common during prolonged desiccation stress. Furthermore, the timing of metabolic shift to exclusive carbohydrate oxidation (RER not different from 1.0) was correlated with desiccation resistance of the respective studied species, suggesting triggering by alterations to hemolymph homeostasis.  相似文献   

19.
SYNOPSIS. Grasshoppers exhibit a diversity of ventilatory patternsdepending on activity status. For each pattern, the mechanismand control of gas exchange is analyzed in terms of a two-stepmodel, consisting of tracheolar and trans-spiracular steps inseries. During the intermittent gas exchange that characterizesthe most quiescent grasshoppers, spiracles open and close inresponse to changing carbon dioxide, and trans-spiracular resistancecontrols gas exchange. In resting but alert grasshoppers, abdominalpumping occurs, and gas exchange is controlled equally by tracheolarand trans-spiracular resistances; tracheal oxygen and carbondioxide are regulated by variation in abdominal pumping andspiracular opening. During hopping, abdominal pumping does notoccur, and bulk gas flow is driven by cuticular deformationsassociated with locomotion. Increased cellular oxygen consumptiondepends on use of internal oxygen stores and increased partialpressure gradients. After hopping ceases, abdominal pumpingincreases dramatically and restores tracheal gas composition;however, the rise in abdominal pumping after hopping is notaffected by tracheal gas levels. During flight, bulk flow tothe flight muscles is driven by tidal thoracic auto-ventilation,while the remainder of the body is ventilated by abdominal pumping.During both hopping and flight, the greatest resistances togas transport exist in the tracheolar rather than the trans-spiracularstep.  相似文献   

20.
Effects of Neem EC (The Indian Neem Tree CompanyTM, 1% azadirachtin) on gas exchange cycles, tracheal ventilation, and water loss in diapausing pupae of the large white butterfly, Pieris brassicae L. (Lepidoptera: Pieridae), were studied using a constant volume respirometer combined with an infrared probe actograph. The non‐treated pupae displayed discontinuous gas exchange cycles (DGC) with a trend coinciding with the bursts of carbon dioxide (CO2) release, active tracheal ventilation, and the heartbeat periods. Two independent forms of tracheal ventilation were observed, relatively vigorous abdominal shaking movements and weak abdominal pulsations. The ability to respond to mechanical excitation with abdominal movements was entirely lost on the 2nd day after treatments with Neem EC, and also a reduced tendency to use a DGC was observed. During 2–3 days after treatments, the DGCs and gas exchange microcycles were entirely lost, as was active ventilation. Before treatments, body mass loss, that is, water loss, was 0.6–0.9 mg g?1 day?1. After the treatments, water loss increased to 3–5 mg g?1 day?1. The pupae remained alive for 10–15 days after the treatments and died after having lost about 50% of their initial body mass. The absence of heartbeats measured during at least 4–5 h was the main criterion for ascertaining death of pupae. The results suggested that respiratory failures, that is, the loss of cyclic gas exchange, evoked by Neem EC were the primary cause of lethal desiccation. Thus, the hypothesis that the cyclic gas exchange is an adaptation for restricting water losses in insects was supported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号