共查询到20条相似文献,搜索用时 0 毫秒
1.
Neurons are highly polarized cells whose dendrites and axons extend long distances from the cell body to form synapses that mediate neuronal communication. The trafficking of membrane lipids and proteins throughout the neuron is essential for the establishment and maintenance of cell morphology and synaptic function. However, the dynamic shape and spatial organization of secretory organelles, and their role in defining neuronal polarity and the composition of synapses, are not well delineated. In particular, the structure and function of the continuous and intricate network of the endoplasmic reticulum (ER) in neurons remain largely unknown. Here we review our current understanding of the ER in dendrites and axons, its contribution to local trafficking of neurotransmitter receptors, and the implications for synaptic plasticity and pathology. 相似文献
2.
Sulfatase modifying factor 1 trafficking through the cells: from endoplasmic reticulum to the endoplasmic reticulum
下载免费PDF全文

Ester Zito Mario Buono Stefano Pepe Carmine Settembre Ida Annunziata Enrico Maria Surace Thomas Dierks Maria Monti Marianna Cozzolino Piero Pucci Andrea Ballabio Maria Pia Cosma 《The EMBO journal》2016,35(23):2614-2615
3.
Sulfatase modifying factor 1 trafficking through the cells: from endoplasmic reticulum to the endoplasmic reticulum
下载免费PDF全文

Zito E Buono M Pepe S Settembre C Annunziata I Surace EM Dierks T Monti M Cozzolino M Pucci P Ballabio A Cosma MP 《The EMBO journal》2007,26(10):2443-2453
Sulfatase modifying factor 1 (SUMF1) is the gene mutated in multiple sulfatase deficiency (MSD) that encodes the formylglycine-generating enzyme, an essential activator of all the sulfatases. SUMF1 is a glycosylated enzyme that is resident in the endoplasmic reticulum (ER), although it is also secreted. Here, we demonstrate that upon secretion, SUMF1 can be taken up from the medium by several cell lines. Furthermore, the in vivo engineering of mice liver to produce SUMF1 shows its secretion into the blood serum and its uptake into different tissues. Additionally, we show that non-glycosylated forms of SUMF1 can still be secreted, while only the glycosylated SUMF1 enters cells, via a receptor-mediated mechanism. Surprisingly, following its uptake, SUMF1 shuttles from the plasma membrane to the ER, a route that has to date only been well characterized for some of the toxins. Remarkably, once taken up and relocalized into the ER, SUMF1 is still active, enhancing the sulfatase activities in both cultured cells and mice tissues. 相似文献
4.
Early-onset torsion dystonia is a severe, life-long disease that leads to loss of motor control and involuntary muscle contractions. While the molecular etiology of the disease is not fully understood, a mutation in an AAA+ ATPase, torsinA, has been linked to disease onset. Previous work on torsinA has shown that it localizes to the endoplasmic reticulum, where there is evidence that it plays roles in protein trafficking, and potentially also protein folding. Given the high level of evolutionary conservation among proteins involved in these processes, the ability of human such proteins to function effectively in yeast, as well as the previous successes achieved in examining other proteins involved in complex human diseases in yeast, we hypothesized that Saccharomyces cerevisiae might represent a useful model system for studying torsinA function and the effects of its mutants. Since torsinA is proposed to function in protein homeostasis, we tested cells for their ability to respond to various stressors, using a fluorescent reporter to measure the unfolded protein response, as well as their rate of protein secretion. TorsinA did not impact these processes, even after co-expression of its recently identified interacting partner, printor. In light of these findings, we propose that yeast may lack an additional cofactor necessary for torsinA function or proteins required for essential post-translational modifications of torsinA. Alternatively, torsinA may not function in endoplasmic reticulum protein homeostasis. The strains and assays we describe may provide useful tools for identifying and investigating these possibilities and are freely available. 相似文献
5.
Lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis requires the extraplastidic TGD4 protein 总被引:1,自引:0,他引:1
The development of chloroplasts in Arabidopsis thaliana requires extensive lipid trafficking between the endoplasmic reticulum (ER) and the plastid. The biosynthetic enzymes for the final steps of chloroplast lipid assembly are associated with the plastid envelope membranes. For example, during biosynthesis of the galactoglycerolipids predominant in photosynthetic membranes, galactosyltransferases associated with these membranes transfer galactosyl residues from UDP-Gal to diacylglycerol. In Arabidopsis, diacylglycerol can be derived from the ER or the plastid. Here, we describe a mutant of Arabidopsis, trigalactosyldiacylglycerol4 (tgd4), in which ER-derived diacylglycerol is not available for galactoglycerolipid biosynthesis. This mutant accumulates diagnostic oligogalactoglycerolipids, hence its name, and triacylglycerol in its tissues. The TGD4 gene encodes a protein that appears to be associated with the ER membranes. Mutant ER microsomes show a decreased transfer of lipids to isolated plastids consistent with in vivo labeling data, indicating a disruption of ER-to-plastid lipid transfer. The complex lipid phenotype of the mutant is similar to that of the tgd1,2,3 mutants disrupted in components of a lipid transporter of the inner plastid envelope membrane. However, unlike the TGD1,2,3 complex, which is proposed to transfer phosphatidic acid through the inner envelope membrane, TGD4 appears to be part of the machinery mediating lipid transfer between the ER and the outer plastid envelope membrane. The extent of direct ER-to-plastid envelope contact sites is not altered in the tgd4 mutant. However, this does not preclude a possible function of TGD4 in those contact sites as a conduit for lipid transfer between the ER and the plastid. 相似文献
6.
7.
- Download : Download high-res image (227KB)
- Download : Download full-size image
8.
The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. 总被引:18,自引:4,他引:18
下载免费PDF全文

The endoplasmic reticulum (ER) is a multifunctional organelle responsible for production of both lumenal and membrane components of secretory pathway compartments. Secretory proteins are folded, processed, and sorted in the ER lumen and lipid synthesis occurs on the ER membrane itself. In the yeast Saccharomyces cerevisiae, synthesis of ER components is highly regulated: the ER-resident proteins by the unfolded protein response and membrane lipid synthesis by the inositol response. We demonstrate that these two responses are intimately linked, forming different branches of the same pathway. Furthermore, we present evidence indicating that this coordinate regulation plays a role in ER biogenesis. 相似文献
9.
10.
Membrane targeting of G-protein alphabetagamma heterotrimers was investigated in live cells by use of Galpha and Ggamma subunits tagged with spectral mutants of green fluorescent protein. Unlike Ras proteins, Gbetagamma contains a single targeting signal, the CAAX motif, which directed the dimer to the endoplasmic reticulum. Endomembrane localization of farnesylated Ggamma(1), but not geranylgeranylated Ggamma(2), required carboxyl methylation. Targeting of the heterotrimer to the plasma membrane (PM) required coexpression of all three subunits, combining the CAAX motif of Ggamma with the fatty acyl modifications of Galpha. Galpha associated with Gbetagamma on the Golgi and palmitoylation of Galpha was required for translocation of the heterotrimer to the PM. Thus, two separate signals, analogous to the dual-signal targeting mechanism of Ras proteins, cooperate to target heterotrimeric G proteins to the PM via the endomembrane. 相似文献
11.
Reticulon 3 is involved in membrane trafficking between the endoplasmic reticulum and Golgi 总被引:7,自引:0,他引:7
Wakana Y Koyama S Nakajima K Hatsuzawa K Nagahama M Tani K Hauri HP Melançon P Tagaya M 《Biochemical and biophysical research communications》2005,334(4):1198-1205
Reticulons (RTNs) constitute a family of endoplasmic reticulum (ER)-associated proteins with a reticular distribution. Despite the implication of their neuronal isoforms in axonal regeneration, the function of their widely expressed isoforms is largely unknown. In this study, we examined the role of the ubiquitously expressed RTN3 in membrane trafficking. Ectopically expressed RTN3 exhibited heterogeneous patterns; filamentous, reticular, and granular distributions. The ER morphology changed accordingly. In cells where RTN3 displayed a filamentous/reticular distribution, protein transport between the ER and Golgi was blocked, and Golgi proteins were dispersed. In contrast, ERGIC-53, a marker for the ER-Golgi intermediate compartment, accumulated at the perinuclear region, and remained there even after cells were treated with agents that induce redistribution of Golgi proteins to the ER, indicating an inhibition of Golgi-to-ER transport of ERGIC-53. These results suggest that RTN3 plays a role in membrane trafficking in the early secretory pathway. 相似文献
12.
Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi 总被引:14,自引:0,他引:14
下载免费PDF全文

Hirose H Arasaki K Dohmae N Takio K Hatsuzawa K Nagahama M Tani K Yamamoto A Tohyama M Tagaya M 《The EMBO journal》2004,23(6):1267-1278
ZW10, a dynamitin-interacting protein associated with kinetochores, is known to participate directly in turning off of the spindle checkpoint. In the present study, we show that ZW10 is located in the endoplasmic reticulum as well as in the cytosol during interphase, and forms a subcomplex with RINT-1 (Rad50-interacting protein) and p31 in a large complex comprising syntaxin 18, an endoplasmic reticulum-localized t-SNARE implicated in membrane trafficking. Like conventional syntaxin-binding proteins, ZW10, RINT-1 and p31 dissociated from syntaxin 18 upon Mg(2+)-ATP treatment in the presence of NSF and alpha-SNAP, whereas the subcomplex was not disassembled. Overexpression, microinjection and knockdown experiments revealed that ZW10 is involved in membrane trafficking between the endoplasmic reticulum and Golgi. The present results disclose an unexpected role for a spindle checkpoint protein, ZW10, during interphase. 相似文献
13.
Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus 总被引:17,自引:41,他引:17
下载免费PDF全文

Ca2+ and GTP hydrolysis are shown to be required for the transport of protein between the ER and the cis-Golgi compartment in semiintact cells, an in vitro system that reconstitutes transport between intact organelles. Transport was inhibited rapidly and irreversibly in the presence of micromolar concentrations of the nonhydrolyzable GTP analogue, GTP gamma S. The transport block in the presence of GTP gamma S was found to be distal to a post-ER, pre-Golgi compartment where proteins accumulate during incubation at 15 degrees C. In addition, transport was completely inhibited in the absence of free Ca2+. A sharp peak defining optimal transport between the ER and the cis-Golgi was found to occur in the presence of 0.1 microM free Ca2+. Inhibition of transport in the absence of free Ca2+ was found to be fully reversible allowing the step inhibited by GTP gamma S to be assigned to a position intermediate between the ER and the Ca2+ requiring step. The results suggest that GTP hydrolysis may trigger a switch to insure vectorial transport of protein along the ER/Golgi pathway, and that a free Ca2+ level similar to the physiological levels found in interphase cells is essential for a terminal step in vesicle delivery to the cis-Golgi compartment. 相似文献
14.
Durk Fekkes Ellen Van Overmeeren-Kaptein Roel Docter Georg Hennemann Theo J. Visser 《Biochimica et Biophysica Acta (BBA)/General Subjects》1979,587(1):12-19
The iodothyronine-deiodinating enzymes (iodothyronine-5- and 5′-deiodinase) of rat liver were found to be located in the parenchymal cells. Differential centrifugation of rat liver homogenate revealed that the deiodinases resided mainly in the microsomal fraction. The subcellular distribution pattern of these enzymes correlated best with glucose-6-phosphatase, a marker enzyme of the endoplasmic reticulum. Plasma membranes, prepared by discontinuous sucrose gradient centrifugation, were found to contain very little deiodinating activity. Analysis of fractions obtained during the course of plasma membrane isolation showed that the deiodinases correlated positively with glucose-6-phosphates (r >/ 0.98) and negatively with the plasma membrane marker 5′-nucleotidase (r ranging between ?0.88 and ?0.97). It is concluded that the iodothyronine-deiodinating enzymes of rat liver are associated with the endoplasmic reticulum. 相似文献
15.
The endoplasmic reticulum and the unfolded protein response 总被引:2,自引:0,他引:2
The endoplasmic reticulum (ER) is the site where proteins enter the secretory pathway. Proteins are translocated into the ER lumen in an unfolded state and require protein chaperones and catalysts of protein folding to attain their final appropriate conformation. A sensitive surveillance mechanism exists to prevent misfolded proteins from transiting the secretory pathway and ensures that persistently misfolded proteins are directed towards a degradative pathway. In addition, those processes that prevent accumulation of unfolded proteins in the ER lumen are highly regulated by an intracellular signaling pathway known as the unfolded protein response (UPR). The UPR provides a mechanism by which cells can rapidly adapt to alterations in client protein-folding load in the ER lumen by expanding the capacity for protein folding. In addition, a variety of insults that disrupt protein folding in the ER lumen also activate the UPR. These include changes in intralumenal calcium, altered glycosylation, nutrient deprivation, pathogen infection, expression of folding-defective proteins, and changes in redox status. Persistent protein misfolding initiates apoptotic cascades that are now known to play fundamental roles in the pathogenesis of multiple human diseases including diabetes, atherosclerosis and neurodegenerative diseases. 相似文献
16.
Levine T 《Trends in cell biology》2004,14(9):483-490
Intracellular trafficking is not mediated exclusively by vesicles. Additional, non-vesicular mechanisms transport material, in particular small molecules such as lipids and Ca(2+) ions, from one organelle to another. This transport occurs at narrow cytoplasmic gaps called membrane contact sites (MCSs), at which two organelles come into close apposition. Despite the conservation of these structures throughout evolution, little is known about this transport, largely because of a lack of knowledge of almost all molecular components of MCSs. Recently, this situation has started to change because the structural proteins that bridge an MCS are now known in a single case, and proteins implicated in lipid trafficking have been localized to MCSs. In the light of these advances, I hypothesize that the endoplasmic reticulum has a central role in the trafficking of lipids and ions by forming a network of MCSs with most other intracellular organelles. 相似文献
17.
Most integral membrane proteins are targeted, inserted and assembled in the endoplasmic reticulum membrane. The sequential and potentially overlapping events necessary for membrane protein integration take place at sites termed translocons, which comprise a specific set of membrane proteins acting in concert with ribosomes and, probably, molecular chaperones to ensure the success of the whole process. In this minireview, we summarize our current understanding of helical membrane protein integration at the endoplasmic reticulum, and highlight specific characteristics that affect the biogenesis of multispanning membrane proteins. 相似文献
18.
19.
The neuronal secretory pathway represents the intracellular route for proteins involved in synaptic transmission and plasticity, as well as lipids required for outgrowth and remodelling of dendrites and axons. Although neurons use the same secretory compartments as other eukaryotic cells, the enormous distances involved, as well as the unique morphology of the neuron and its signalling requirements, challenge canonical models of secretory pathway organization. Here, we review evidence for a distributed secretory pathway in neurons, suggest mechanisms that may regulate secretory compartment distribution, and discuss the implications of a distributed secretory pathway for neuronal morphogenesis and neural-circuit plasticity. 相似文献
20.
D Fekkes E van Overmeeren-Kaptein R Docter G Hennemann T J Visser 《Biochimica et biophysica acta》1979,587(1):12-19
The iodothyronine-deiodinating enzymes (iodothyronine-5- and 5'-deiodinase) of rat liver were found to be located in the parenchymal cells. Differential centrifugation of rat liver homogenate revealed that the deiodinases resided mainly in the microsomal fraction. The subcellular distribution pattern of these enzymes correlated best with glucose-6-phosphatase, a marker enzyme of the endoplasmic reticulum. Plasma membranes, prepared by discontinuous sucrose gradient centrifugation, were found to contain very little deiodinating activity. Analysis of fractions obtained during the course of plasma membrane isolation showed that the deiodinases correlated positively with glucose-6-phosphatase (r larger than or equal to 0.98) and negatively with the plasma membrane marker 5'-nucleotidase (r ranging between -0.88 and -0.97). It is concluded that the iodothyronine-deiodinating enzymes of rat liver are associated with the endoplasmic reticulum. 相似文献