首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gastrointestinal tract is a passageway for dietary nutrients, microorganisms and xenobiotics. The gut is home to diverse bacterial communities forming the microbiota. While bacteria and their metabolites maintain gut homeostasis, the host uses innate and adaptive immune mechanisms to cope with the microbiota and luminal environment. In recent years, multiple bi-directional instructive mechanisms between microbiota, luminal content and mucosal immune systems have been uncovered. Indeed, epithelial and immune cell-derived mucosal signals shape microbiota composition, while microbiota and their by-products shape the mucosal immune system. Genetic and environmental perturbations alter gut mucosal responses which impact on microbial ecology structures. On the other hand, changes in microbiota alter intestinal mucosal responses. In this review, we discuss how intestinal epithelial Paneth and goblet cells interact with the microbiota, how environmental and genetic disorders are sensed by endoplasmic reticulum stress and autophagy responses, how specific bacteria, bacterial- and diet-derived products determine the function and activation of the mucosal immune system. We will also discuss the critical role of HDAC activity as a regulator of immune and epithelial cell homeostatic responses.  相似文献   

2.
Human gut is colonized by numerous microorganisms, in which bacteria present the highest proportion of this colonization that live in a symbiotic relationship with the host. This microbial collection is commonly known as the microbiota. The gut microbiota can mediate gut epithelial and immune cells interaction through vitamins synthesis or metabolic products. The microbiota plays a vital role in growth and development of the main components of human’s adaptive and innate immune system, while the immune system regulates host-microbe symbiosis. On the other hand, negative alteration in gut microbiota composition or gut dysbiosis, can disturb immune responses. This review highlights the gut microbiota-immune system cross-talk in both eubiosis and dysbiosis.  相似文献   

3.
姚志超  白帅  张宏宇 《微生物学报》2018,58(6):1036-1048
在长期的进化过程中,昆虫形成了独特的肠道防御系统,主要由物理屏障和免疫系统共同作用来抵御外来微生物的入侵。如大部分后生动物一样,昆虫肠道上皮细胞无时无刻不与微生物接触,其种类从有益的共生菌、随食物进入的微生物到影响宿主生命的病原菌。在这样一种复杂的环境中,为了实现防御肠道病原微生物的同时又能维持共生微生物稳定的目的,宿主肠道上皮细胞必须在免疫应激和免疫耐受之间保持一种稳态平衡。Duox-ROS免疫系统和免疫缺陷(immune deficiency,Imd)信号通路作为肠道免疫反应的基本途径,必然参与调节此过程。本文从昆虫肠道防御组成、肠道免疫信号通路作用分子机制以及肠道免疫系统在肠道微生物群落稳态维持中的作用的最新研究进展进行综述。  相似文献   

4.
The trillions of microbes that inhabit the human gut (the microbiota) together with the host comprise a complex ecosystem, and like any ecosystem, health relies on stability and balance. Some of the most important members of the human microbiota are those that help maintain this balance via modulation of the host immune system. Gut microbes, through both molecular factors (such as capsular components) and by-products of their metabolism (such as Short Chain Fatty Acids (SCFAs)), can influence both innate and adaptive components of the immune system, in ways that can drive both effector, and regulatory responses. Here we review how commensal microbes can specifically promote a dynamic balance of these immune responses in the mammalian gut.  相似文献   

5.
The infant's immature intestinal immune system develops as it comes into contact with dietary and microbial antigens in the gut. The evolving indigenous intestinal microbiota have a significant impact on the developing immune system and there is accumulating evidence indicating that an intimate interaction between gut microbiota and host defence mechanisms is mandatory for the development and maintenance of a balance between tolerance to innocuous antigens and capability of mounting an inflammatory response towards potential pathogens. Disturbances in the mucosal immune system are reflected in the composition of the gut microbiota and vice versa. Distinctive alterations in the composition of the gut microbiota appear to precede the manifestation of atopic disease, which suggests a role for the interaction between the intestinal immune system and specific strains of the microbiota in the pathogenesis of allergic disorders. The administration of probiotics, strains of bacteria from the healthy human gut microbiota, have been shown to stimulate antiinflammatory, tolerogenic immune responses, the lack of which has been implied in the development of atopic disorders. Thus probiotics may prove beneficial in the prevention and alleviation of allergic disease.  相似文献   

6.
Antibiotics as growth promotants: mode of action   总被引:5,自引:0,他引:5  
Recent concerns about the use of growth-promoting antibiotics in pig diets have renewed interest in the immunologic and growth-regulating functions of the gastrointestinal (GI) tract. The numerically dense and metabolically active microbiota ofthe pig GI tract represents a key focal point for such questions. The intestinal microbiota is viewed typically as a beneficial entity for the host. Intestinal bacteria provide both nutritional and defensive functions for their host. However, the host animal invests substantially in defensive efforts to first sequester gut microbes away from the epithelial surface, and second to quickly mount immune responses against those organisms that breach epithelial defenses. The impact of host responses to gut bacteria and their metabolic activities require special consideration when viewed in the context of pig production in which efficiency of animal growth is a primary objective. Here, we summarize the working hypothesis that antibiotics improve the efficiency of animal growth via their inhibition of the normal microbiota, leading to increased nutrient utilization and a reduction in the maintenance costs ofthe GI system. In addition, novel molecular ecology techniques are described that can serve as tools to uncover the relationship between intestinal microbiology and growth efficiency.  相似文献   

7.
The mammalian intestine encounters many more microorganisms than any other tissue in the body thus making it the largest and most complex component of the immune system. Indeed, there are greater than 100 trillion (1014) microbes within the healthy human intestine, and the total number of genes derived from this diverse microbiome exceeds that of the entire human genome by at least 100-fold. Our coexistence with the gut microbiota represents a dynamic and mutually beneficial relationship that is thought to be a major determinant of health and disease. Because of the potential for intestinal microorganisms to induce local and/or systemic inflammation, the intestinal immune system has developed a number of immune mechanisms to protect the host from pathogenic infections while limiting the inflammatory tissue injury that accompanies these immune responses. Failure to properly regulate intestinal mucosal immunity is thought to be responsible for the inflammatory tissue injury observed in the inflammatory bowel diseases (IBD; Crohn disease, ulcerative colitis). An accumulating body of experimental and clinical evidence strongly suggests that IBD results from a dysregulated immune response to components of the normal gut flora in genetically susceptible individuals. The objective of this review is to present our current understanding of the role that enteric microbiota play in intestinal homeostasis and pathogenesis of chronic intestinal inflammation.  相似文献   

8.
Humans are colonized by a diverse collection of microbes, the largest numbers of which reside in the distal gut. The vast majority of humans coexist in a beneficial equilibrium with these microbes. However, disruption of this mutualistic relationship can manifest itself in human diseases such as inflammatory bowel disease. Thus the study of inflammatory bowel disease and its genetics can provide insight into host pathways that mediate host-microbiota symbiosis. Bacteria of the human intestinal ecosystem face numerous challenges imposed by human dietary intake, the mucosal immune system, competition from fellow members of the gut microbiota, transient ingested microbes and invading pathogens. Considering features of human resident gut bacteria provides the opportunity to understand how microbes have achieved their symbiont status. While model symbionts have provided perspective into host-microbial homeostasis, high-throughput approaches are becoming increasingly practical for functionally characterizing the gut microbiota as a community.  相似文献   

9.
The intestinal tract is home to nematodes as well as commensal bacteria (microbiota), which have coevolved with the mammalian host. The mucosal immune system must balance between an appropriate response to dangerous pathogens and an inappropriate response to commensal microbiota that may breach the epithelial barrier, in order to maintain intestinal homeostasis. IL-22 has been shown to play a critical role in maintaining barrier homeostasis against intestinal pathogens and commensal bacteria. Here we review the advances in our understanding of the role of IL-22 in helminth infections, as well as in response to commensal and pathogenic bacteria of the intestinal tract. We then consider the relationship between intestinal helminths and gut microbiota and hypothesize that this relationship may explain how helminths may improve symptoms of inflammatory bowel diseases. We propose that by inducing an immune response that includes IL-22, intestinal helminths may enhance the mucosal barrier function of the intestinal epithelium. This may restore the mucosal microbiota populations from dysbiosis associated with colitis and improve intestinal homeostasis.  相似文献   

10.
This article is part of a Special Issue "Neuroendocrine-Immune Axis in Health and Disease." The body is colonized by highly complex and genetically diverse communities of microbes, the majority of which reside within the intestines in largely stable but dynamically interactive climax communities. These microbes, referred to as the microbiota, have many functions that enhance the health of the host, and it is now recognized that the microbiota influence both mucosal and systemic immunity. The studies outlined in this review demonstrate that the microbiota are also involved in stressor-induced immunomodulation. Exposure to different types of stressors, including both physical and psychological stressors, changes the composition of the intestinal microbiota. The altered profile increases susceptibility to an enteric pathogen, i.e., Citrobacter rodentium, upon oral challenge, but is also associated with stressor-induced increases in innate immune activity. Studies using germfree mice, as well as antibiotic-treated mice, provide further evidence that the microbiota contribute to stressor-induced immunomodulation; stressor-induced increases in splenic macrophage microbicidal activity fail to occur in mice with no, or reduced, intestinal microbiota. While the mechanisms by which microbiota can impact mucosal immunity have been studied, how the microbiota impact systemic immune responses is not clear. A mechanism is proposed in which stressor-induced degranulation of mucosal mast cells increases the permeability of the intestines. This increased permeability would allow intact bacteria and/or bacterial products (like peptidoglycan) to translocate from the lumen of the intestines to the interior of the body, where they directly, or indirectly, prime the innate immune system for enhanced reactivity to antigenic stimulation.  相似文献   

11.
张碧云  杨红玲  汪攀  孙云章 《微生物学报》2021,61(10):3046-3058
鱼类肠道中存在大量微生物,对于维持宿主健康具有重要作用。鱼类免疫系统能够监视并调控肠道微生物组成,维持肠道菌群稳态。同时,鱼类肠道共生微生物调节鱼类免疫系统,抑制病原微生物的过度增殖,保证宿主的健康。本文回顾了鱼类肠道微生物与宿主免疫系统相互作用的研究进展,重点介绍了宿主免疫系统识别肠道微生物、塑造肠道菌群以及益生菌对宿主免疫和肠道菌群的调控等,提出了理想的益生菌应该来自动物自身胃肠道,生产中应谨慎选用非宿主来源的益生菌,以期为推动鱼类肠道功能微生物开发和应用提供理论支撑。  相似文献   

12.
The mucosal immune system – consisting of adaptive and innate immune cells as well as the epithelium – is profoundly influenced by its microbial environment. There is now growing evidence that the converse is also true, that the immune system shapes the composition of the intestinal microbiome. During conditions of health, this bidirectional interaction achieves a homeostasis in which inappropriate immune responses to non-pathogenic microbes are averted and immune activity suppresses blooms of potentially pathogenic microbes (pathobionts). Genetic alteration in immune/epithelial function can affect host gardening of the intestinal microbiome, contributing to the diversity of intestinal microbiota within a population and in some cases allowing for unfavorable microbial ecologies (dysbiosis) that confer disease susceptibility.  相似文献   

13.
Diet is an important regulator of the gastrointestinal microbiota. Vitamin A and vitamin D deficiencies result in less diverse, dysbiotic microbial communities and increased susceptibility to infection or injury of the gastrointestinal tract. The vitamin A and vitamin D receptors are nuclear receptors expressed by the host, but not the microbiota. Vitamin A- and vitamin D-mediated regulation of the intestinal epithelium and mucosal immune cells underlies the effects of these nutrients on the microbiota. Vitamin A and vitamin D regulate the expression of tight junction proteins on intestinal epithelial cells that are critical for barrier function in the gut. Other shared functions of vitamin A and vitamin D include the support of innate lymphoid cells that produce IL-22, suppression of IFN-γ and IL-17 by T cells, and induction of regulatory T cells in the mucosal tissues. There are some unique functions of vitamin A and D; for example, vitamin A induces gut homing receptors on T cells, while vitamin D suppresses gut homing receptors on T cells. Together, vitamin A- and vitamin D-mediated regulation of the intestinal epithelium and mucosal immune system shape the microbial communities in the gut to maintain homeostasis.  相似文献   

14.
目的炎症性肠病(IBD)包括克罗恩病(CD)和溃疡性结肠炎(UC),以持续性肠道非特异性炎症为特征,通常反复发作、迁延不愈,临床上仍无特效性的治疗手段。IBD确切的发病机制尚不清楚,涉及免疫、环境及遗传等因素,这些因素共同诱导肠道炎症、黏膜损伤和修复。肠道微生物群落及其代谢产物、宿主基因易感性及肠道黏膜免疫三方面共同参与了IBD的发病机制。本文从消化道微生态角度出发,对目前IBD相关的肠道微生物群落研究现状、宿主-微生物间免疫应答及益生菌治疗等内容进行探讨。  相似文献   

15.
动物宿主——肠道微生物代谢轴研究进展   总被引:6,自引:1,他引:5  
皮宇  高侃  朱伟云 《微生物学报》2017,57(2):161-169
肠道中栖息着数量庞大且复杂多样的微生物菌群,在维持宿主肠道微环境稳态中发挥重要作用。微生物菌群可以利用宿主肠道的营养素,发酵产生代谢产物,与宿主机体形成宿主—微生物代谢轴(host-microbe metabolic axis)。该代谢轴既能影响营养素吸收和能量代谢,又可调控宿主各项生理过程。本文主要阐述宿主-肠道微生物代谢轴的概念、肠-肝轴、肠-脑轴、肠道微生物与宿主肠道代谢轴的互作以及对机体健康的影响。  相似文献   

16.
Gut mucosal barriers, including chemical and physical barriers, spatially separate the gut microbiota from the host immune system to prevent unwanted immune responses that could lead to intestinal inflammation. In inflammatory bowel disease (IBD), there is mucosal barrier dysfunction coupled with immune dysregulation and dysbiosis. The discovery of exosomes as regulators of vital functions in both physiological and pathological processes has generated much research interest. Interestingly, exosomes not only serve as natural nanocarriers for the delivery of functional RNAs, proteins, and synthetic drugs or molecules, but also show potential for clinical applications in tissue repair and regeneration as well as disease diagnosis and prognosis. Biological or chemical modification of exosomes can broaden, change and enhance their therapeutic capability. We review the modulatory effects of exosomal proteins, RNAs and lipids on IBD components such as immune cells, the gut microbiota and the intestinal mucosal barrier. Mechanisms involved in regulating these factors towards attenuating IBD have been explored in several studies employing exosomes derived from different sources. We discuss the potential utility of exosomes as diagnostic markers and drug delivery systems, as well as the application of modified exosomes in IBD.  相似文献   

17.
J Pott  M Hornef 《EMBO reports》2012,13(8):684-698
The intestinal epithelium-which constitutes the interface between the enteric microbiota and host tissues-actively contributes to the maintenance of mucosal homeostasis and defends against pathogenic microbes. The recognition of conserved microbial products by cytosolic or transmembrane pattern recognition receptors in epithelial cells initiates signal transduction and influences effector cell function. However, the signalling pathways, effector molecules and regulatory mechanisms involved are not yet fully understood, and the functional outcome is poorly defined. This review analyses the complex and dynamic role of intestinal epithelial innate immune recognition and signalling, on the basis of results in intestinal epithelial cell-specific transgene or gene-deficient animals. This approach identifies specific epithelial cell functions within the diverse cellular composition of the mucosal tissue, in the presence of the complex and dynamic gut microbiota. These insights have thus provided a more comprehensive understanding of the role of the intestinal epithelium in innate immunity during homeostasis and disease.  相似文献   

18.
近十年来,肠道菌群在人类许多疾病发病机制中的潜在作用引起了人们的广泛关注。已被证实肠道菌群与肥胖和肥胖相关的代谢性疾病的发生发展密切相关。与肥胖相关的肠道微生物可调控宿主的能量代谢、胰岛素抵抗和脂肪组织堆积,这些在肥胖发生中都起着至关重要的作用。本综述重点介绍了代谢紊乱中肠道菌群组成的变化以及肠道菌群在肥胖发病机制中的作用,包括能量代谢、中枢食欲、免疫系统和宿主昼夜节律。在不久的将来,该领域的研究将为治疗肥胖及其并发症开辟新的途径。  相似文献   

19.
Intestinal bacteria form a resident community that has co-evolved with the mammalian host. In addition to playing important roles in digestion and harvesting energy, commensal bacteria are crucial for the proper functioning of mucosal immune defenses. Most of these functions have been attributed to the presence of large numbers of 'innocuous' resident bacteria that dilute or occupy niches for intestinal pathogens or induce innate immune responses that sequester bacteria in the lumen, thus quenching excessive activation of the mucosal immune system. However it has recently become obvious that commensal bacteria are not simply beneficial bystanders, but are important modulators of intestinal immune homeostasis and that the composition of the microbiota is a major factor in pre-determining the type and robustness of mucosal immune responses. Here we review specific examples of individual members of the microbiota that modify innate and adaptive immune responses, and we focus on potential mechanisms by which such species-specific signals are generated and transmitted to the host immune system.  相似文献   

20.

肠道菌群作为人体内复杂微生态系统的组成部分, 其作用并不是局限于局部而是作用于全身, 通过影响宿主的代谢、免疫系统和炎症反应等, 在乳腺疾病如乳腺癌和乳腺炎的发生、发展及治疗中扮演了主要角色。随着研究的深入, 人们发现乳腺癌的发生机制与炎症及免疫等密切相关, 而肠道菌群通过改变宿主微生态, 直接参与机体的生理过程和免疫系统的发育。此外, 肠道菌群可通过改变肠黏膜通透性影响炎症发生。因此近年来肠道菌群与乳腺疾病的关系成为研究的热点。本文通过总结近3年的文献, 从中西医角度对肠道菌群与乳腺疾病之间的相互关系作一综述。

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号