首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Purpose

The overall aim of this study is to contribute to the creation of LCA database on electricity generation systems in Ethiopia. This study specifically estimates the environmental impacts associated with wind power systems supplying high voltage electricity to the national grid. The study has regional significance as the Ethiopian electric system is already supplying electricity to Sudan and Djibouti and envisioned to supply to other countries in the region.

Materials and methods

Three different grid-connected wind power systems consisting of four different models of wind turbines with power rates between 1 and 1.67 MW were analyzed for the situation in Ethiopia. The assessment takes into account all the life cycle stages of the total system, cradle to grave, considering all the processes related to the wind farms: raw material acquisition, manufacturing of main components, transporting to the wind farm, construction, operation and maintenance, and the final dismantling and waste treatment. The study has been developed in line with the main principles of the ISO 14040 and ISO 14044 standard procedures. The analysis is done using SimaPro software 8.0.3.14 multi-user, Ecoinvent database version 3.01, and ReCiPe 2008 impact assessment method. The assumed operational lifetime as a baseline is 20 years.

Results and discussion

The average midpoint environmental impact of Ethiopian wind power system per kWh electricity generated is for climate change: 33.6 g CO2 eq., fossil depletion: 8 g oil eq., freshwater ecotoxicity: 0.023 g 1,4-DCB eq., freshwater eutrophication: 0.005 g N eq., human toxicity: 9.9 g 1,4-DCB eq., metal depletion: 18.7 g Fe eq., marine ecotoxicity: 0.098 g 1,4-DCB eq., particulate matter formation: 0.097 g PM10 eq., photochemical oxidant formation: 0.144 g NMVOC, and terrestrial acidification: 0.21 g SO2 eq. The pre-operation phase that includes the upstream life cycle stage is the largest contributor to all the environmental impacts, with shares ranging between 82 and 96%. The values of cumulative energy demand (CED) and energy return on investment (EROI) for the wind power system are 0.393 MJ and 9.2, respectively.

Conclusion

The pre-operation phase is the largest contributor to all the environmental impact categories. The sensitivity and scenario analyses indicate that changes in wind turbine lifespans, capacity factors, exchange rates for parts, transport routes, and treatment activities would result in significant changes in the LCA results.

  相似文献   

2.
Background, Aim and Scope The objective of this life cycle assessment (LCA) study is to develop LCA models for energy systems in order to assess the potential environmental impacts that might result from meeting energy demands in buildings. The scope of the study includes LCA models of the average electricity generation mix in the USA, a natural gas combined cycle (NGCC) power plant, a solid oxide fuel cell (SOFC) cogeneration system; a microturbine (MT) cogeneration system; an internal combustion engine (ICE) cogeneration system; and a gas boiler. Methods LCA is used to model energy systems and obtain the life cycle environmental indicators that might result when these systems are used to generate a unit energy output. The intended use of the LCA analysis is to investigate the operational characteristics of these systems while considering their potential environmental impacts to improve building design using a mixed integer linear programming (MILP) optimization model. Results The environmental impact categories chosen to assess the performance of the energy systems are global warming potential (GWP), acidification potential (AP), tropospheric ozone precursor potential (TOPP), and primary energy consumption (PE). These factors are obtained for the average electricity generation mix, the NGCC, the gas boiler, as well as for the cogeneration systems at different part load operation. The contribution of the major emissions to the emission factors is discussed. Discussion The analysis of the life cycle impact categories indicates that the electrical to thermal energy production ratio has a direct influence on the value of the life cycle PE consumption factors. Energy systems with high electrical to thermal ratios (such as the SOFC cogeneration systems and the NGCC power plant) have low PE consumption factors, whereas those with low electrical to thermal ratios (such as the MT cogeneration system) have high PE consumption factors. In the case of GWP, the values of the life cycle GWP obtained from the energy systems do not only depend on the efficiencies of the systems but also on the origins of emissions contributing to GWP. When evaluating the life cycle AP and TOPP, the types of fuel as well as the combustion characteristics of the energy systems are the main factors that influence the values of AP and TOPP. Conclusions An LCA study is performed to eraluate the life cycle emission factors of energy systems that can be used to meet the energy demand of buildings. Cogeneration systems produce utilizable thermal energy when used to meet a certain electrical demand which can make them an attractive alternative to conventional systems. The life cycle GWP, AP, TOPP and PE consumption factors are obtained for utility systems as well as cogeneration systems at different part load operation levels for the production of one kWh of energy output. Recommendations and Perspectives Although the emission factors vary for the different energy systems, they are not the only factors that influence the selection of the optimal system for building operations. The total efficiencies of the system play a significant part in the selection of the desirable technology. Other factors, such as the demand characteristics of a particular building, influence the selection of energy systems. The emission factors obtained from this LCA study are used as coefficients of decision variables in the formulation of an MILP to optimize the selection of energy systems based on environmental criteria by taking into consideration the system efficiencies, emission characteristics, part load operation, and building energy demands. Therefore, the emission factors should not be regarded as the only criteria for choosing the technology that could result in lower environmental impacts, but rather one of several factors that determine the selection of the optimum energy system. ESS-Submission Editor: Arpad Horvath (horvath@ce.berkeley.edu)  相似文献   

3.

Purpose

Oceans offer a vast amount of renewable energy. Tidal and wave energy devices are currently the most advanced conduits of ocean energy. To date, only a few life cycle assessments for ocean energy have been carried out for ocean energy. This study analyses ocean energy devices, including all technologies currently being proposed, in order to gain a better understanding of their environmental impacts and explore how they can contribute to a more sustainable energy supply.

Methods

The study followed the methodology of life cycle assessment including all life cycle steps from cradle to grave. The various types of device were assessed, on the basis of a functional unit of 1 kWh of electricity delivered to the grid. The impact categories investigated were based on the ILCD recommendations. The life cycle models were set up using detailed technical information on the components and structure of around 180 ocean energy devices from an in-house database.

Results and discussion

The design of ocean energy devices still varies considerably, and their weight ranges from 190 to 1270 t, depending on device type. Environmental impacts are closely linked to material inputs and are caused mainly by mooring and foundations and structural components, while impacts from assembly, installation and use are insignificant for all device types. Total greenhouse gas emissions of ocean energy devices range from about 15 to 105 g CO2-eq. kWh?1. Average global warming potential for all device types is 53?±?29 g CO2-eq. kWh?1. The results of this study are comparable with those of other studies and confirm that the environmental impacts of ocean energy devices are comparable with those of other renewable technologies and can contribute to a more sustainable energy supply.

Conclusions

Ocean energy devices are still at an early stage of development compared with other renewable energy technologies. Their environmental impacts can be further reduced by technology improvements already being pursued by developers (e.g. increased efficiency and reliability). Future life cycle assessment studies should assess whole ocean energy arrays or ocean energy farms.
  相似文献   

4.
5.
Life cycle assessment of municipal waste water systems   总被引:3,自引:0,他引:3  
Life Cycle Assessment was applied to municipal planning in a study of waste water systems in Bergsjön, a Göteborg suburb, and Hamburgsund, a coastal village. Existing waste water treatment consists of mechanical, biological and chemical treatment. The heat in the waste water from Bergsjön is recovered for the district heating system. One alternative studied encompassed pretreatment, anaerobic digestion or drying of the solid fraction and treatment of the liquid fraction in sand filter beds. In another alternative, urine, faeces and grey water would separately be conducted out of the buildings. The urine would be used as fertilizer, whereas faeces would be digested or dried, before used in agriculture. The grey water would be treated in filter beds. Changes in the waste water system would affect surrounding technical systems (drinking water production, district heating and fertilizer production). This was approached through system enlargement. For Hamburgsund, both alternatives showed lower environmental impact than the existing system, and the urine separation system the lowest. Bergsjön results were more difficult to interpret. Energy consumption was lowest for the existing system, whereas air emissions were lower for the alternatives. Water emissions increased for some parameters and decreased for others. Phosphorous recovery was high for all three alternatives, whereas there was virtually no nitrogen recovery until urine separation was introduced.  相似文献   

6.

Purpose

Bio-based products are often considered sustainable due to their renewable nature. However, the environmental performance of products needs to be assessed considering a life cycle perspective to get a complete picture of potential benefits and trade-offs. We present a life cycle assessment of the global commodity ethanol, produced from different feedstock and geographical origin. The aim is to understand the main drivers for environmental impacts in the production of bio-based ethanol as well as its relative performance compared to a fossil-based alternative.

Methods

Ethanol production is assessed from cradle to gate; furthermore, end-of-life emissions are also included in order to allow a full comparison of greenhouse gas (GHG) emissions, assuming degradation of ethanol once emitted to air from household and personal care products. The functional unit is 1 kg ethanol, produced from maize grain in USA, maize stover in USA, sugarcane in North-East of Brazil and Centre-South of Brazil, and sugar beet and wheat in France. As a reference, ethanol produced from fossil ethylene in Western Europe is used. Six impact categories from the ReCiPe assessment method are considered, along with seven novel impact categories on biodiversity and ecosystem services (BES).

Results and discussion

GHG emissions per kilogram bio-based ethanol range from 0.7 to 1.5 kg CO2 eq per kg ethanol and from 1.3 to 2 kg per kg if emissions at end-of-life are included. Fossil-based ethanol involves GHG emissions of 1.3 kg CO2 eq per kg from cradle-to-gate and 3.7 kg CO2 eq per kg if end-of-life is included. Maize stover in USA and sugar beet in France have the lowest impact from a GHG perspective, although when other impact categories are considered trade-offs are encountered. BES impact indicators show a clear preference for fossil-based ethanol. The sensitivity analyses showed how certain methodological choices (allocation rules, land use change accounting, land use biomes), as well as some scenario choices (sugarcane harvest method, maize drying) affect the environmental performance of bio-based ethanol. Also, the uncertainty assessment showed that results for the bio-based alternatives often overlap, making it difficult to tell whether they are significantly different.

Conclusions

Bio-based ethanol appears as a preferable option from a GHG perspective, but when other impacts are considered, especially those related to land use, fossil-based ethanol is preferable. A key methodological aspect that remains to be harmonised is the quantification of land use change, which has an outstanding influence in the results, especially on GHG emissions.  相似文献   

7.

Purpose

Life cycle assessment (LCA) is a tool that can be utilized to holistically evaluate novel trends in the construction industry and the associated environmental impacts. Green labels are awarded by several organizations based on single or multiple attributes. The use of multi-criteria labels is a good start to the labeling process as opposed to single criteria labels that ignore a majority of impacts from products. Life cycle thinking, in theory, has the potential to improve the environmental impacts of labeling systems. However, LCA databases currently are lacking in detailed information about products or sometimes provide conflicting information.

Method

This study compares generic and green-labeled carpets, paints, and linoleum flooring using the Building for Environmental and Economic Sustainability (BEES) LCA database. The results from these comparisons are not intuitive and are contradictory in several impact categories with respect to the greenness of the product. Other data sources such as environmental product declarations and ecoinvent are also compared with the BEES data to compare the results and display the disparity in the databases.

Results

This study shows that partial LCAs focused on the production and transportation phase help in identifying improvements in the product itself and improving the manufacturing process but the results are uncertain and dependent upon the source or database. Inconsistencies in the data and missing categories add to the ambiguity in LCA results.

Conclusions

While life cycle thinking in concept can improve the green labeling systems available, LCA data is lacking. Therefore, LCA data and tools need to improve to support and enable market trends.  相似文献   

8.
The International Journal of Life Cycle Assessment - Regional values for prospective soil organic carbon (SOC) change in Australian cropland were derived via state-of-the-art modelling. This paper...  相似文献   

9.
The International Journal of Life Cycle Assessment - Cotton is the most produced natural fibre in the world, with an annual output of 23 million t of lint in the period 2000–2013. Africa...  相似文献   

10.

Purpose

Two different bioenergy systems using willow chips as raw material has been assessed in detail applying life cycle assessment (LCA) methodology to compare its environmental profile with conventional alternatives based on fossil fuels and demonstrate the potential of this biomass as a lignocellulosic energy source.

Methods

Short rotation forest willow plantations dedicated to biomass chips production for energy purposes and located in Southern Sweden were considered as the agricultural case study. The bioenergy systems under assessment were based on the production and use of willow-based ethanol in a flexi fuel vehicle blended with gasoline (85 % ethanol by volume) and the direct combustion of willow chips in an industrial furnace in order to produce heat for end users. The standard framework for LCA from the International Standards Organisation was followed in this study. The environmental profiles as well as the hot spots all through the life cycles were identified.

Results and discussion

According to the results, Swedish willow biomass production is energetically efficient, and the destination of this biomass for energy purposes (independently the sort of energy) presents environmental benefits, specifically in terms of avoided greenhouse gases emissions and fossil fuels depletion. Several processes from the agricultural activities were identified as hot spots, and special considerations should be paid on them due to their contribution to the environmental impact categories under analysis. This was the case for the production and use of the nitrogen-based fertilizer, as well as the diesel used in agricultural machineries.

Conclusions

Special attention should be paid on diffuse emissions from the ethanol production plant as well as on the control system of the combustion emissions from the boiler.  相似文献   

11.

Purpose

Earlier studies on agricultural life cycle assessment recommend that practitioners use two functional units—product weight and land area—because agriculture entails commodity production and land use. However, there are still ambiguities in this approach from the perspective of decision support. The purpose of this paper is to provide recommendations to support farming conversion decisions on the basis of a framework constructed on two alternative views of agricultural production. Organic conversion of arable farming is selected as a case study.

Methods

Four types of conversion were constructed on the basis of land-oriented expression, in which inputs into and outputs from land were depicted, and product-oriented expression, in which inputs into and outputs from products were depicted. Then, the frequencies for each type were counted using LCI databases and data from journal papers.

Results

The results can be summarized as follows: (1) trade-off conversion, in which improvements in environmental impacts per area unit are involved in decrease of yield per area unit, is common. (2) Conversion tended to be efficient; that is, environmental impacts per product unit tended to improve. (3) Within trade-off conversion, the conversion tended to be efficient. (4) When conversion was efficient, there were trade-offs.

Conclusions

Since the results for one expression were not always derivable from the results for another expression, the recommendation of this study is to use the two expressions complementarily, knowing that win–win conversion is rare. In addition, there is a general recommendation to use decision criteria rather than trying to make decisions on the basis of multiple functional units because comparisons based on the two functional units are not on the same level.  相似文献   

12.
This study was intended to evaluate the environmental impact, and potential improvements for a typical tractor model (LT360D) of LG Machinery Co., Ltd. The life cycle of this study includes all stages from raw material acquisition up to final disposal. The eco-indicator 95 method was employed to perform an impact assessment. The result of this study is expected to represent the environmental feature of typical diesel vehicles at each life cycle stage. This study is a starting point of building life cycle inventories for typical off-road diesel tractors. With this result, environmental weak points of the tractor have been defined, and major improvement strategies have been set up to develop the ‘Green Tractor’.  相似文献   

13.

Purpose

This study aims to contribute to an improved understanding of the environmental implications of offshore power grid and wind power development pathways. To achieve this aim, we present two assessments. First, we investigate the impacts of a North Sea power grid enabling enhanced trade and integration of offshore wind power. Second, we assess the benefit of the North Sea grid and wind power through a comparison of scenarios for power generation in affected countries.

Methods

The grid scenario explored in the first assessment is the most ambitious scenario of the Windspeed project and is the result of cost minimization analysis using a transmission-expansion-planning model. We develop a hybrid life cycle inventory for array cables; high voltage, direct current (HVDC) links; and substations. The functional unit is 1 kWh of electricity transmitted. The second assessment compares two different energy scenarios of Windspeed for the North Sea and surrounding countries. Here, we utilize a life cycle inventory for offshore grid components together with an inventory for a catalog of power generation technologies from Ecoinvent and couple these inventories with grid configurations and electricity mixes determined by the optimization procedure in Windspeed.

Results and discussion

Developing, operating, and dismantling the grid cause emissions of 2.5 g CO2-Eq per kWh electricity transmission or 36 Mt CO2-Eq in total. HVDC cables are the major cause of environmental damage, causing, for example, half of total climate change effects. The next most important contributors are substations and array cabling used in offshore wind parks. Toxicity and eutrophication effects stem largely from leakages from disposed copper and iron mine tailings and overburden. Results from the comparison of two scenarios demonstrate a substantial environmental benefit from the North Sea grid extension and the associated wind power development compared with an alternative generation of electricity from fossil fuels. Offshore grid and wind power, however, entail an increased use of metals and, hence, a higher metal depletion indicator.

Conclusions

We present the first life cycle assessment of a large offshore power grid, using the results of an energy planning model as input. HVDC links are the major cause of environmental damage. There are differences across impact categories with respect to which components or types of activities that are responsible for damage. The North Sea grid and wind power are environmentally beneficial by an array of criteria if displacing fossil fuels, but cause substantial metal use.  相似文献   

14.

Purpose

To support the data requirements of stakeholders, the Nickel Institute (NI) conducted a global life cycle impact assessment (LCIA) to show, with indicators, the potential environmental impacts of the production of nickel and ferronickel from mine to refinery gate. A metal industry wide agreed approach on by-products and allocation was applied.

Methods

Nine companies, comprising 19 operations, contributed data, representing 52 % of global nickel metal production and 40 % of global ferronickel production. All relevant pyro- and hydrometallurgical production routes were considered, across most major nickel-producing regions. Data from Russia, the biggest nickel-producing nation, was included; the Chinese industry did not participate. 2011 was chosen as reference year for data collection. The LCIA applied allocation of impacts of by-products using both economic and mass allocations. A sensitivity analysis was conducted to further understand the relevance and impact of the different allocation approaches.

Results and discussion

The primary extraction and refining steps are the main contributors to primary energy demand (PED) and global warming potential (GWP), contributing 60 and 70 % to the PED for the production of 1 kg class I nickel and 1 kg nickel in ferronickel, respectively, and over 55 % of the GWP for both nickel products. The PED for 1 kg class 1 nickel was calculated to be 147 MJ, whilst the PED for 1 kg nickel in ferronickel was calculated to be three times higher at 485 MJ. The main factors influencing energy demand in the metallurgical processes are ore grade and ore mineralogy. Sulphidic ore is less energy intensive to process than oxidic ore. Eighty-six percent of the production volume from class 1 nickel producers, in this study, is from sulphidic ore. All ferronickel was produced from oxidic ore. The LCIA results, including a sensitivity analysis of the impact of producers with higher and lower PED, reflect the influence of the production route on energy demand and on environmental impact categories.

Conclusions

Conformant to relevant ISO standards, and backed-up with a technical and critical review, this LCIA quantifies the environmental impacts associated with the production of the main nickel products. With this study, a sound background dataset for downstream users of nickel has been provided. The Nickel Institute aims to update their data in the coming years to reflect upon changes in technology, energy efficiency, and raw material input.
  相似文献   

15.
The International Journal of Life Cycle Assessment - To support the needs of downstream users of zircon sand and other industry stakeholders, the Zircon Industry Association (ZIA) conducted an...  相似文献   

16.
Pesticides are biologically active substances that are directly released to the environment during the use phase of their life cycle. Pesticides are widely used and play an important role in the production of vital goods such as food, feedstuffs and cotton. The Discussion Forum 19 focused on the impact assessment of pesticides applied in agriculture. The discussion forum started with three talks about new approaches to estimate pesticide emissions and to assess their fate in the environment. The following short presentations illustrated the application of some of these methods in case studies and highlighted the problem of data availability. The last two presentations provided insight into risk assessment models used for pesticide registration from a company perspective and from the viewpoint of the authorities.  相似文献   

17.
18.
Purpose

Ferro niobium (FeNb) is a metallic alloy whose industrial use has been increasing steadily in the last decades. This work aims to systematize the available information on FeNb production, provide its inventory data and generate its first technologically representative publicly available life cycle impact assessment (LCIA).

Methods

The production of 1 kg of FeNb from pyrochlore in the baseline year 2017 was modelled following a cradle-to-gate approach. Primary information on mass, energy and water flows was collected when possible from the Brazilian leading FeNb supplier, CBMM (80% of the world market). The CML method (CML-IA 4.7) was applied for the impact assessment including global warming potential (GWP), acidification potential (AP), eutrophication potential (EP), ozone layer depletion potential (ODP), abiotic depletion potential (fossil and elemental) (ADPfossil and ADPelemental) and photochemical ozone creation potential (POCP).

Results and discussion

The first stage of pyrochlore processing (pyrochlore ore extraction, mechanical processing and flotation) and the last stage (aluminothermic reaction) bear the highest impact in all analyzed CML impact categories. The primary aluminium consumption has the most important contribution in five out of seven impact categories (50% in ADPfossil, 55% in AP, 35% in EP, 57% in GWP and 40% in POCP). In this sense, the industry should promote a higher share of secondary aluminium in the production process. Also, the impact from electricity consumption and processing chemicals showed to be relevant.

Conclusions

This work is the first LCIA on ferro niobium to be published with representative, high-quality data. A dataset was produced in order to enable ferro niobium to be incorporated to future LCIA-modelling.

  相似文献   

19.

Purpose

Pulp and paper manufacturing constitutes one of the largest industry segments in term of water and energy usage and total discharges to the environment. More than many other industries, however, this industry plays a key role in sustainable development because its most important raw material, wood fiber, is renewable Dias and Houtman (Environ Prog 23(4):347?C357, 2004). Actually, even if the communication is dominated by electronic media, paper-based communication has a role to play due to its unique practical and aesthetic qualities. This research aims to assess the environmental impact of advertising folders produced with different papers and distributed by a system of Italian consumers?? cooperatives in order to indicate the possible options of improvement and to assess the CO2 (eq) emitted during the entire life cycle.

Methods

Life cycle assessment (LCA) was performed from cradle-to-grave considering paper production, transport from paper mill to printing site, printing, distribution, and disposal. Data for the study were directly collected from specific companies and completed on the basis of literature information. The analysis was conducted using the SimaPro 7.1.5 software and IMPACT 2002+ method to assess all its environmental impact and damage categories.

Results and discussion

LCA analysis indicates that the higher environmental impact is mainly due to paper production and printing processes. The main operations which generate the major impact in the paper production stage are related to the direct or indirect fossil energy use, the production of additives for bleaching operations, and the collection and selection of waste paper. Printing causes relevant impacts for the electricity and ink production and for the aluminum plates used in the offset printing. Moreover, the use of paper with low quantity of additives and small amount of primary fibers causes a reduction of the environmental load of 13.94?%. The major global warming potential value was found for advertising folders made with little amount of mechanical pulp which slightly contributes to the absorption of CO2.

Conclusions

The analysis pointed out the relevance of the paper production phase and of the printing step within the advertising folders life cycle and allowed to detect the other critical stages of the life cycle. Paper composition greatly affects the environmental impact of the advertising folders?? life cycle.  相似文献   

20.

Background Aims and Scope  

Sustainability was adopted by UNEP in Rio de Janeiro (1992) as the main political goal for the future development of humankind. It should also be the ultimate aim of product development. According to the well known interpretation of the original definition given in the Brundtland report, sustainability comprises three components: environment, economy and social aspects. These components or “pillars” of sustainability have to be properly assessed and balanced if a new product is to be designed or an existing one is to be improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号