首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perlecan, a secreted heparan sulfate proteoglycan, is a major component of the vascular basement membrane and participates in angiogenesis. Here, we used small interference RNA-mediated knockdown of perlecan expression to investigate the regulatory function of perlecan in the growth of human vascular endothelial cells. Basic fibroblast growth factor (bFGF)-induced ERK phosphorylation and cyclin D1 expression were unchanged by perlecan deficiency in endothelial cells; however, perlecan deficiency inhibited the Rb protein phosphorylation and DNA synthesis induced by bFGF. By contrast to cytoplasmic localization of the cyclin-dependent kinase inhibitor p27 in control endothelial cells, p27 was localized in the nucleus and its expression increased in perlecan-deficient cells, which suggests that p27 mediates inhibition of Rb phosphorylation. In addition to the well-characterized function of perlecan as a co-receptor for heparin-binding growth factors such as bFGF, our results suggest that perlecan plays an indispensible role in endothelial cell proliferation and acts through a mechanism that involves subcellular localization of p27.  相似文献   

2.
Pancreatic ductal adenocarcinoma (PDAC) is the fifth leading cause of cancer internationally. As the precise molecular pathways that regulate pancreatic cancer are incompletely understood, appropriate targets for drug intervention remain elusive. It is being increasingly appreciated that the cellular microenvironment plays an important role in driving tumor growth and metastasis. CCN1, a member of the CCN family of secreted matricellular proteins, is overexpressed in pancreatic cancer, and may represent a novel target for therapy. Sonic hedgehog (SHh) is responsible for PDAC cell proliferation, epithelial-mesenchymal transition (EMT), maintenance of cancer stemness, migration, invasion, and metastatic growth; in a recent report, it was shown that CCN1 is a potent regulator of SHh expression via Notch-1. CCN1 activity was mediated, at least in part, through altering proteosome activity. These results suggest that CCN1 may be an ideal target for treating PDAC.  相似文献   

3.
Expansion of limbal epithelial stem cells (LSCs) is crucial for the success of limbal transplantation. Previous studies showed that pigment epithelium‐derived peptide (PEDF) short peptide 44‐mer could effectively expand LSCs and maintain them in a stem‐cell state, but the mechanism remained unclear. In the current study, we found that pharmacological inhibition of Sonic Hedgehog (SHh) activity reduced the LSC holoclone number and suppressed LSC proliferation in response to 44‐mer. In mice subjected to focal limbal injury, 44‐mer facilitated the restoration of the LSC population in damaged limbus, and such effect was impeded by the SHh or ATGL (a PEDF receptor) inhibitor. Furthermore, we showed that 44‐mer increased nuclear translocation of Gli1 and Gli3 in LSCs. Knockdown of Gli1 or Gli3 suppressed the ability of 44‐mer to induce cyclin D1 expression and LSC proliferation. In addition, ATGL inhibitor suppressed the 44‐mer‐induced phosphorylation of STAT3 at Tyr705 in LSC. Both inhibitors for ATGL and STAT3 attenuated 44‐mer‐induced SHh activation and LSC proliferation. In conclusion, our data demonstrate that SHh‐Gli pathway driven by ATGL/STAT3 signalling accounts for the 44‐mer‐mediated LSC proliferation.  相似文献   

4.
FGF-2 is a regulator of chondrocyte proliferation in the developing growth plate and has been shown to bind to perlecan, a heparan sulfate proteoglycan. We evaluated the effect of perlecan isolated from the growth plate on the binding of FGF-2 to its low and high affinity receptors on resting and proliferating chondrocytes. Chondrocytes were isolated by pronase/collagenase digestion of 1 mm thick slices from the resting and proliferating zones of fetal bovine ribs and were plated in serum-free DMEM. Chondrocytes maintained their zone-specific level of DNA and matrix synthesis over a two-day culture period. The collagen, aggrecan, and perlecan components of the matrix produced were associated with the cell layer and were secreted into the medium. Most of the perlecan made by the chondrocytes was secreted into the medium. Western blots showed medium perlecan to contain two high molecular weight core proteins and overlay assays showed only the large core protein bound FGF-2. Cell layer perlecan contained only the smaller core protein. Immunoprecipitation assays of media showed that the medium perlecan bound (125)I-FGF-2, that the bound FGF-2 was eluted from perlecan by 2 M NaCl at pH 7.4, and that this binding was eliminated by prior digestion with heparatinase. This indicates that the perlecan secreted into the medium is a low affinity receptor for FGF-2. (125)I-FGF-2 also bound to the chondrocytes in cell culture. Competition studies showed exogenous FGF-2 reduced (125)I-FGF-2 binding to high affinity receptor but not the low affinity receptor in the cell layer. Exogenous perlecan, however, reduced (125)I-FGF-2 binding to both the low and the high affinity receptors in the cell layer by approximately 60%. The results suggest that perlecan made by growth plate chondrocytes is a low affinity receptor for FGF-2 and acts to sequester FGF-2 away from the high affinity receptor.  相似文献   

5.
6.
7.
Perlecan, a widespread heparan sulfate proteoglycan, functions as a bioactive reservoir for growth factors by stabilizing them against misfolding or proteolysis. These factors, chiefly members of the fibroblast growth factor (FGF) gene family, are coupled to the N-terminal heparan sulfate chains, which augment high affinity binding and receptor activation. However, rather little is known about biological partners of the protein core. The major goal of this study was to identify novel proteins that interact with the protein core of perlecan. Using the yeast two-hybrid system and domain III of perlecan as bait, we screened approximately 0.5 10(6) cDNA clones from a keratinocyte library and identified a strongly interactive clone. This cDNA corresponded to FGF-binding protein (FGF-BP), a secreted protein previously shown to bind acidic and basic FGF and to modulate their activities. Using a panel of deletion mutants, FGF-BP binding was localized to the second EGF repeat of domain III, a region very close to the binding site for FGF7. FGF-BP could be coimmunoprecipitated with an antibody against perlecan and bound in solution to recombinant domain III-alkaline phosphatase fusion protein. Immunohistochemical analyses revealed colocalization of FGF-BP and perlecan in the pericellular stroma of various squamous cell carcinomas suggesting a potential in vivo interaction. Thus, FGF-BP should be considered a novel biological ligand for perlecan, an interaction that could influence cancer growth and tissue remodeling.  相似文献   

8.
CCN1 is a matricellular protein and a member of the CCN family of growth factors. CCN1 is associated with the development of various cancers including pancreatic ductal adenocarcinoma (PDAC). Our recent studies found that CCN1 plays a critical role in pancreatic carcinogenesis through the induction of EMT and stemness. CCN1 mRNA and protein were detected in the early precursor lesions, and their expression intensified with disease progression. However, biochemical activity and the molecular targets of CCN1 in pancreatic cancer cells are unknown. Here we show that CCN1 regulates the Sonic Hedgehog (SHh) signaling pathway, which is associated with the PDAC progression and poor prognosis. SHh regulation by CCN1 in pancreatic cancer cells is mediated through the active Notch-1. Notably, active Notch-1is recruited by CCN1 in these cells via the inhibition of proteasomal degradation results in stabilization of the receptor. We find that CCN1-induced activation of SHh signaling might be necessary for CCN1-dependent in vitro pancreatic cancer cell migration and tumorigenicity of the side population of pancreatic cancer cells (cancer stem cells) in a xenograft in nude mice. Moreover, the functional role of CCN1 could be mediated through the interaction with the αvβ3 integrin receptor. These extensive studies propose that targeting CCN1 can provide a new treatment option for patients with pancreatic cancer since blocking CCN1 simultaneously blocks two critical pathways (i.e. SHh and Notch1) associated with the development of the disease as well as drug resistance.  相似文献   

9.
Perlecan, a large heparan sulfate proteoglycan, is a component of the basement membrane and other extracellular matrices and has been implicated in multiple biological functions. Mutations in the perlecan gene (HSPG2) cause two classes of skeletal disorders: the relatively mild Schwartz-Jampel syndrome (SJS) and severe neonatal lethal dyssegmental dysplasia, Silverman-Handmaker type (DDSH). SJS is an autosomal recessive skeletal dysplasia characterized by varying degrees of myotonia and chondrodysplasia, and patients with SJS survive. The molecular mechanism underlying the chondrodystrophic myotonia phenotype of SJS is unknown. In the present report, we identify five different mutations that resulted in various forms of perlecan in three unrelated patients with SJS. Heterozygous mutations in two patients with SJS either produced truncated perlecan that lacked domain V or significantly reduced levels of wild-type perlecan. The third patient had a homozygous 7-kb deletion that resulted in reduced amounts of nearly full-length perlecan. Unlike DDSH, the SJS mutations result in different forms of perlecan in reduced levels that are secreted to the extracellular matrix and are likely partially functional. These findings suggest that perlecan has an important role in neuromuscular function and cartilage formation, and they define the molecular basis involved in the difference in the phenotypic severity between DDSH and SJS.  相似文献   

10.
The goal of this study was to discover novel partners for perlecan, a major heparan sulfate proteoglycan of basement membranes, and to examine new interactions through which perlecan may influence cell behavior. We employed the yeast two-hybrid system and used perlecan domain V as bait to screen a human keratinocyte cDNA library. Among the strongest interacting clones, we isolated a approximately 1.6-kb cDNA insert that encoded extracellular matrix protein 1 (ECM1), a secreted glycoprotein involved in bone formation and angiogenesis. The sequencing of the clone revealed the existence of a novel splice variant that we name ECM1c. The interaction was validated by co-immunoprecipitation studies, using both cell-free systems and mammalian cells, and the specific binding site within each molecule was identified employing various deletion mutants. The C terminus of ECM1 interacted specifically with the epidermal growth factor-like modules flanking the LG2 subdomain of perlecan domain V. Perlecan and ECM1 were also co-expressed by a variety of normal and transformed cells, and immunohistochemical studies showed a partial expression overlap, particularly around dermal blood vessels and adnexal epithelia. ECM1 has been shown to regulate endochondral bone formation, stimulate the proliferation of endothelial cells, and induce angiogenesis. Similarly, perlecan plays an important role in chondrogenesis and skeletal development, as well as harboring pro- and anti-angiogenic activities. Thus, a physiological interaction could also occur in vivo during development and in pathological events, including tissue remodeling and tumor progression.  相似文献   

11.
Using the zebrafish, we previously identified a central function for perlecan during angiogenic blood vessel development. Here, we explored the nature of perlecan function during developmental angiogenesis. A close examination of individual endothelial cell behavior revealed that perlecan is required for proper endothelial cell migration and proliferation. Because these events are largely mediated by VEGF-VEGFR2 signaling, we investigated the relationship between perlecan and the VEGF pathway. We discovered that perlecan knockdown caused an abnormal increase and redistribution of total VEGF-A protein suggesting that perlecan is required for the appropriate localization of VEGF-A. Importantly, we linked perlecan function to the VEGF pathway by efficiently rescuing the perlecan morphant phenotype by microinjecting VEGF-A165 protein or mRNA. Combining the strategic localization of perlecan throughout the vascular basement membrane along with its growth factor-binding ability, we hypothesized a major role for perlecan during the establishment of the VEGF gradient which provides the instructive cues to endothelial cells during angiogenesis. In support of this hypothesis we demonstrated that human perlecan bound in a heparan sulfate-dependent fashion to VEGF-A165. Moreover, perlecan enhanced VEGF mediated VEGFR2 activation of human endothelial cells. Collectively, our results indicate that perlecan coordinates developmental angiogenesis through modulation of VEGF-VEGFR2 signaling events. The identification of angiogenic factors, such as perlecan, and their role in vertebrate development will not only enhance overall understanding of the molecular basis of angiogenesis, but may also provide new insight into angiogenesis-based therapeutic approaches.  相似文献   

12.
Heparanase (HPSE-1) is involved in the degradation of both cell-surface and extracellular matrix (ECM) heparan sulfate (HS) in normal and neoplastic tissues. Degradation of heparan sulfate proteoglycans (HSPG) in mammalian cells is dependent upon the enzymatic activity of HPSE-1, an endo-beta-d-glucuronidase, which cleaves HS using a specific endoglycosidic hydrolysis rather than an eliminase type of action. Elevated HPSE-1 levels are associated with metastatic cancers, directly implicating HPSE-1 in tumor progression. The mechanism of HPSE-1 action to promote tumor progression may involve multiple substrates because HS is present on both cell-surface and ECM proteoglycans. However, the specific targets of HPSE-1 action are not known. Of particular interest is the relationship between HPSE-1 and HSPG, known for their involvement in tumor progression. Syndecan-1, an HSPG, is ubiquitously expressed at the cell surface, and its role in cancer progression may depend upon its degradation. Conversely, another HSPG, perlecan, is an important component of basement membranes and ECM, which can promote invasive behavior. Down-regulation of perlecan expression suppresses the invasive behavior of neoplastic cells in vitro and inhibits tumor growth and angiogenesis in vivo. In this work we demonstrate the following. 1) HPSE-1 cleaves HS present on the cell surface of metastatic melanoma cells. 2) HPSE-1 specifically degrades HS chains of purified syndecan-1 or perlecan HS. 3) Syndecan-1 does not directly inhibit HPSE-1 enzymatic activity. 4) The presence of exogenous syndecan-1 inhibits HPSE-1-mediated invasive behavior of melanoma cells by in vitro chemoinvasion assays. 5) Inhibition of HPSE-1-induced invasion requires syndecan-1 HS chains. These results demonstrate that cell-surface syndecan-1 and ECM perlecan are degradative targets of HPSE-1, and syndecan-1 regulates HPSE-1 biological activity. This suggest that expression of syndecan-1 on the melanoma cell surface and its degradation by HPSE-1 are important determinants in the control of tumor cell invasion and metastasis.  相似文献   

13.
Apolipoprotein E (apoE) is known to inhibit cell proliferation; however, the mechanism of this inhibition is not clear. We recently showed that apoE stimulates endothelial production of heparan sulfate (HS) enriched in heparin-like sequences. Because heparin and HS are potent inhibitors of smooth muscle cell (SMC) proliferation, in this study we determined apoE effects on SMC HS production and cell growth. In confluent SMCs, apoE (10 microg/ml) increased (35)SO(4) incorporation into PG in media by 25-30%. The increase in the medium was exclusively due to an increase in HSPGs (2.2-fold), and apoE did not alter chondroitin and dermatan sulfate proteoglycans. In proliferating SMCs, apoE inhibited [(3)H]thymidine incorporation into DNA by 50%; however, despite decreasing cell number, apoE increased the ratio of (35)SO(4) to [(3)H]thymidine from 2 to 3.6, suggesting increased HS per cell. Purified HSPGs from apoE-stimulated cells inhibited cell proliferation in the absence of apoE. ApoE did not inhibit proliferation of endothelial cells, which are resistant to heparin inhibition. Analysis of the conditioned medium from apoE-stimulated cells revealed that the HSPG increase was in perlecan and that apoE also stimulated perlecan mRNA expression by >2-fold. The ability of apoE isoforms to inhibit cell proliferation correlated with their ability to stimulate perlecan expression. An anti-perlecan antibody completely abrogated the antiproliferative effect of apoE. Thus, these data show that perlecan is a potent inhibitor of SMC proliferation and is required to mediate the antiproliferative effect of apoE. Because other growth modulators also regulate perlecan expression, this may be a key pathway in the regulation of SMC growth.  相似文献   

14.
We previously reported that fully assembled basement membranes are nonpermissive to smooth muscle cell (SMC) replication and that perlecan (PN), a basement membrane heparan sulfate proteoglycan, is a dominant effector of this response. We report here that SMC adhesion to basement membranes, and perlecan in particular, up-regulate the expression of focal adhesion kinase-related nonkinase (FRNK), a SMC-specific endogenous inhibitor of FAK, which subsequently suppresses FAK-mediated, ERK1/2-dependent growth signals. Up-regulation of FRNK by perlecan is actively and continuously regulated. Relative to the matrix proteins studied, the effects are unique to perlecan, because plating of SMCs on several other basement membrane proteins is associated with low levels of FRNK and corresponding high levels of FAK and ERK1/2 phosphorylation and SMC growth. Perlecan supports SMC adhesion, although there is reduced cell spreading compared with fibronectin (FN), laminin (LN), or collagen type IV (IV). Despite the reduction in cell spreading, we report that perlecan-induced up-regulation of FRNK is independent of cell shape changes. Growth inhibition by perlecan was rescued by overexpressing a constitutively active FAK construct, but overexpressing kinase-inactivated mutant FAK or FRNK attenuated fibronectin-stimulated growth. These data indicate that perlecan functions as an endogenously produced inhibitor of SMC growth at least in part through the active regulation of FRNK expression. FRNK, in turn, may control SMC growth by downregulating FAK-dependent signaling events.  相似文献   

15.
During cementogenesis, dental follicular cells penetrate the ruptured Hertwig's epithelial root sheath (HERS) and differentiate into cementoblasts. Mechanisms involved in basement membrane degradation during this process have not been clarified. Perlecan, a heparan sulfate (HS) proteoglycan, is a component of all basement membranes. Degradation of HS of perlecan by heparanase cleavage affects a variety of biological processes. We elucidated immunolocalization of perlecan and heparanase in developing murine molars to clarify their roles in cementoblast differentiation. At the initial stage of root formation, perlecan immunoreactivity was detected on the basement membrane of HERS. Weak heparanase immunoreactivity was detected in HERS cells. HERS showed intense staining for heparanase as root formation progressed. In contrast, labeling for perlecan disappeared from the basement membrane facing the dental follicle, and weak immunoreactivity for perlecan was detected on the inner side of the basement membrane of HERS. These findings suggest that perlecan removal is an important step for root and periodontal tissue formation. Heparanase secreted by the cells of HERS may contribute to root formation by degrading perlecan in the dental basement membrane.  相似文献   

16.
Quantitative proteomics can be used as a screening tool for identification of differentially expressed proteins as potential biomarkers for cancers. Candidate biomarkers from such studies can subsequently be tested using other techniques for use in early detection of cancers. Here we demonstrate the use of stable isotope labeling with amino acids in cell culture (SILAC) method to compare the secreted proteins (secretome) from pancreatic cancer-derived cells with that from non-neoplastic pancreatic ductal cells. We identified 145 differentially secreted proteins (>1.5-fold change), several of which were previously reported as either up-regulated (e.g. cathepsin D, macrophage colony stimulation factor, and fibronectin receptor) or down-regulated (e.g. profilin 1 and IGFBP-7) proteins in pancreatic cancer, confirming the validity of our approach. In addition, we identified several proteins that have not been correlated previously with pancreatic cancer including perlecan (HSPG2), CD9 antigen, fibronectin receptor (integrin beta1), and a novel cytokine designated as predicted osteoblast protein (FAM3C). The differential expression of a subset of these novel proteins was validated by Western blot analysis. In addition, overexpression of several proteins not described previously to be elevated in human pancreatic cancer (CD9, perlecan, SDF4, apoE, and fibronectin receptor) was confirmed by immunohistochemical labeling using pancreatic cancer tissue microarrays suggesting that these could be further pursued as potential biomarkers. Lastly the protein expression data from SILAC were compared with mRNA expression data obtained using gene expression microarrays for the two cell lines (Panc1 and human pancreatic duct epithelial), and a correlation coefficient (r) of 0.28 was obtained, confirming previously reported poor associations between RNA and protein expression studies.  相似文献   

17.
Neuromuscular junction (NMJ) assembly is characterized by the clustering and neuronal alignment of acetylcholine receptors (AChRs). In this study we have addressed post-synaptic contributions to assembly that may arise from the NMJ basement membrane with cultured myotubes. We show that the cell surface-binding LG domains of non-neural (muscle) agrin and perlecan promote AChR clustering in the presence of laminin-2. This type of AChR clustering occurs with a several hour lag, requires muscle-specific kinase (MuSK), and is accompanied by tyrosine phosphorylation of MuSK and betaAChR. It also requires conjugation of the agrin or perlecan to laminin together with laminin polymerization. Furthermore, AChR clustering can be mimicked with antibody binding to non-neural agrin, supporting a mechanism of ligand aggregation. Neural agrin, in addition to its unique ability to cluster AChRs through its B/z sequence insert, also exhibits laminin-dependent AChR clustering, the latter enhancing and stabilizing its activity. Finally, we show that type IV collagen, which lacks clustering activity on its own, stabilizes laminin-dependent AChR clusters. These findings provide evidence for cooperative and partially redundant MuSK-dependent functions of basement membrane in AChR assembly that can enhance neural agrin activity yet operate in its absence. Such interactions may contribute to the assembly of aneural AChR clusters that precede neural agrin release as well as affect later NMJ development.  相似文献   

18.
Proteoglycans have been identified within the extracellular matrices (ECM) of bone and are known to play a role in ECM assembly, mineralization, and bone formation. Bone morphogenetic protein-2 (BMP-2) specifically converts the differentiation pathway of C2C12 myoblasts into that of osteoblast lineage cells. Microarray analyses of the mouse myoblast cell line C2C12 and its differentiation into osteoblastic cells in response to BMP-2 have suggested the up-regulation of several proteoglycan species, although there is a lack of biochemical evidence for this response. In this study we have biochemically analyzed and characterized the proteoglycan populations that are induced in C2C12 cells upon osteoblastic differentiation produced by BMP-2. An important and specific increase in the synthesis of secreted decorin was observed in BMP-2-treated cells, as compared to untreated myoblasts and myoblasts induced to differentiate into myotubes. Decorin was seen to contain larger glycosaminoglycan (GAG) chains in induced than in non-induced cells. BMP-2 also produced an augment in the synthesis of different heparan sulfate proteoglycans such syndecan-2, - 3, glypican, and perlecan in detergent-soluble and non-soluble cellular fractions. We also examined whether the evident changes induced by BMP-2 in secreted decorin could have a functional role. BMP-2 signaling dependent as well as induction of alkaline phosphatase (ALP) activity was diminished in decorin null myoblasts compared to wild type myoblats although cell surface level of BPM-2 receptors was unchanged. These results are the first biochemical evidence and analysis for the effect of BMP-2 on the synthesis of proteoglycan during osteogenic conversion of myoblasts and suggest a role for decorin in cell response to BMP-2.  相似文献   

19.
Vascular endothelial growth factor (VEGF) blockade has been validated clinically as a treatment for human cancers, yet virtually all patients eventually develop progressive disease during therapy. In order to dissect this phenomenon, we examined the effect of sustained VEGF blockade in a model of advanced pediatric cancer. Treatment of late-stage hepatoblastoma xenografts resulted in the initial collapse of the vasculature and significant tumor regression. However, during sustained treatment, vessels recovered, concurrent with a striking increase in tumor expression of perlecan, a heparan sulfate proteoglycan. Whereas VEGF mRNA was expressed at the periphery of surviving clusters of tumor cells, both secreted VEGF and perlecan accumulated circumferential to central vessels. Vascular expression of heparanase, VEGF receptor-2 ligand binding, and receptor activation were concurrently maintained despite circulating unbound VEGF Trap. Endothelial survival signaling via Akt persisted. These findings provide a novel mechanism for vascular survival during sustained VEGF blockade and indicate a role for extracellular matrix molecules that sequester and release biologically active VEGF.  相似文献   

20.
Although interleukin-2 (IL-2) is typically considered a soluble cytokine, our laboratory has shown that the availability of IL-2 in lymphoid tissues is regulated, in part, by an association with heparan sulfate glycosaminoglycan. Heparan sulfate is usually found in proteoglycan form, in which the heparan sulfate chains are covalently linked to a specific core protein. We now show that perlecan is one of the major IL-2-binding heparan sulfate proteoglycans in murine spleen. IL-2 binds perlecan via heparan sulfate chains, as enzymatic removal of heparan sulfate from splenic perlecan abolishes its ability to bind IL-2. Furthermore, we demonstrate that perlecan-bound IL-2 supports the proliferation of an IL-2-dependent cell line. Identification of perlecan as a major heparan sulfate proteoglycan that binds IL-2 has implications for both the localization and regulation of IL-2 in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号