首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A selective, rapid and sensitive hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC–MS/MS) method was developed for the first time to determine adefovir in human plasma and applied to a pharmacokinetic study. Plasma samples were prepared by protein precipitation with methanol followed by a further cleaning using dichloromethane. The chromatographic separation was carried out on an ACQUITY UPLC™ BEH HILIC column with the mobile phase of methanol–water–formic acid (85:15:0.2, v/v/v). The detection was performed on a triple-quadrupole tandem mass spectrometer with multiple reaction monitoring (MRM) mode via electrospray ionization (ESI) source. The method was rapid with a run time of 3 min per sample. The linear calibration curves were obtained in the concentration range of 1.02–102 ng/mL (r2 ≥ 0.99) with the lower limit of quantification (LLOQ) of 1.02 ng/mL. The intra- and inter-day precision (relative standard deviation, R.S.D.) values were below 12% and the accuracy (relative error, R.E.) was from 0.6% to 3.2% at all quality control (QC) levels. The method was applicable to clinical pharmacokinetic study of adefovir in healthy volunteers after oral administration of adefovir dipivoxil tablet.  相似文献   

2.
A sensitive, simple and feasible method has been developed and validated for the simultaneous determination of three diastereoisomers of hexabromocyclododecane (HBCD) in human plasma using liquid chromatography tandem mass spectrometry (LC-MS/MS). The simple pretreatment generally involved protein precipitation with methanol (MeOH). The separation was performed with a C18 reverse phase column. The mobile phases were 5mM ammonium acetate (NH(4)AC) in water and acetonitrile (ACN). The mass spectrometer was operated using negative electrospray ionization (ESI) source and the data acquisition was carried out with multiple reaction monitoring (MRM) mode. The analyte quantifications were performed by external standard method with matrix-matched calibration curves. The method was partially validated with the evaluations of accuracy, precision, linearity, limit of quantification (LOQ), limit of detection (LOD), recovery, matrix effect and carryover effect. With the present method, the intra-batch accuracies were 94.7-104.3%, 91.9-109.3% and 89.8-105.0% for α-, β- and γ-HBCD, respectively. And the inter-batch accuracies were ranged from 94.2% to 109.7%. Both intra-batch and inter-batch precisions (relative standard deviation, RSD, %) of the analytes were no more than 11.2%. The recoveries were from 79.0% to 108.9% and the LOQ was 10pg/mL for each diastereoisomer. The linear range was 10-10,000pg/mL with the linear correlation coefficient R(2)>0.996. No significant matrix effect and carryover effect of the analytes were observed in this study. This method is in possession of sufficient resolution, high sensitivity as well as selectivity and convenient to be applied to the trace determination of HBCDs in human plasma.  相似文献   

3.
4.
A rapid, simple and sensitive high-performance liquid chromatography tandem mass spectrometry method was developed and validated for simultaneous determination of six main steroidal saponins in Paris polyphylla in rat plasma. Ginsenoside Rg3 was selected as the internal standard (IS). Plasma samples were pretreated with protein precipitation, and the separation was achieved on a reverse phase Agilent poroshell120 EC-C18 column using a gradient mobile phase system of acetonitrile–water containing 0.1% formic acid. The triple quadruple mass spectrometer was set in negative electrospray ionization mode and multiple reaction monitoring (MRM) was used for six steroidal saponins quantification. The precursors to produce ion transitions monitored for polyphyllin I, polyphyllin II, polyphyllin VI, polyphyllin VII, dioscin, gracillin and IS were m/z 899.5 > 853.4, 1059.5 > 1013.5, 783.4 > 737.4, 1075.5 > 1029.5, 913.5 > 867.4, 929.5 > 883.4 and 819.5 > 783.4, respectively. The intra- and inter-day precisions (RSD%) were less than 13% and the average extraction recoveries ranged from 85% to 97.0% for each analyte. Six steroidal saponins were proved to be stable during sample storage, preparation and analytical procedures. The established method was employed for simultaneous quantification and successfully used for the first time for the pharmacokinetics evaluation of the six main compounds after intragastric administration of P. polyphylla extract in Sprague–Dawley rats.  相似文献   

5.
A sensitive and accurate method for determination of bicyclol in dog plasma was developed. Thermo Scientific TSQ Quantum triple quadrupole system with multiple ion monitoring (MIM) positive scanning mode was applied. Bicyclol and DDB (IS) sodium adduct molecular ions were monitored at m/z 413 and m/z 441 in both Q1 and Q3, respectively. The collision energy in Q2 was set to 15 eV. Precipitation method was employed in the extraction of bicyclol and DDB from the biological matrix. The method was validated over 1–500 ng/mL for bicyclol. The recovery was 96.5–109.5%, and the limit of quantitation (LOQ) detection was 1 ng/mL for bicyclol. The intra- and inter-day precision of the method at three concentrations was 3.3–14.3% with accuracy of 99.9–109.0%. The method was successfully applied to bioequivalence studies of bicyclol controlled-release formulation to obtain the pharmacokinetic parameters.  相似文献   

6.
Bestatin is a low molecular weight aminopeptidase inhibitor originally isolated from culture filtrates of Streptomyces olivoreticuli. We have developed a sensitive, specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantitative determination of bestatin in rat plasma using granisetron as the internal standard. The analyte and internal standard were isolated from 50 microL plasma samples by solid phase extraction (SPE). Reverse-phase HPLC separation was accomplished on a Lichrospher C18 column (4.6 mm x 50 mm, 5 microm) with a mobile phase composed of methanol-water-formic acid (70:30:0.5, v/v/v) at a flow rate of 0.8 mL/min. The method had a chromatographic total run time of 3 min. A Varian 1200L electrospray tandem mass spectrometer equipped with an electrospray ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 309.2-->120.0 (bestatin) and 313.4-->138.0 (granisetron) used for quantitation. The method was sensitive with a lower limit of quantitation (LLOQ) of 5 ng/mL, with good linearity (r2 >or= 0.999) over the linear range of 5-2000 ng/mL. All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was successfully applied to pharmacokinetic study of bestatin in rats.  相似文献   

7.
A new drug, quick-acting anti-motion capsule (QAAMC) composed of d-amphetamine sulfate, dimenhydrinate and ginger extraction has been studied for anti-motion-sickness use. We have developed a sensitive, specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the quantitative determination of d-amphetamine and diphenhydramine, the main effective components of the QAAMC, using pseudoephedrine as the internal standard. The analytes and internal standard were isolated from 200 microL plasma samples by a simple liquid-liquid extraction (LLE). Reverse-phase HPLC separation was accomplished on a Zorbax SB-C18 column (100 mm x 3.0 mm, 3.5 microm) with a mobile phase composed of methanol-water-formic acid (65:35:0.5, v/v/v) at a flow rate of 0.2 mL/min. The method had a chromatographic total run time of 5 min. A Varian 1200 L electrospray tandem mass spectrometer equipped with an electrospray ionization source was operated in selected reaction monitoring (SRM) mode with the precursor-to-product ion transitions m/z 136.0-->91.0 (D-amphetamine), 256.0-->167.0 (diphenhydramine) and 166.1-->148.0 (IS) used for quantitation. The method was sensitive with a lower limit of quantitation (LLOQ) of 0.5 ng/mL for d-amphetamine and 1 ng/mL for diphenhydramine, with good linearity in the range 0.5-200 ng/mL for D-amphetamine and 1-500 ng/mL for diphenhydramine (r(2)> or =0.9990). All the validation data, such as accuracy, precision, and inter-day repeatability, were within the required limits. The method was successfully applied to pharmacokinetic study of the QAAMC in beagle dogs.  相似文献   

8.
Introduction – Chiisanogenin existing in many Acanthopanax species has been reported to possess anti‐inflammatory, antibacterial and antiplatelet aggregatory activities. Objective – To develop and validate a rapid and sensitive ultra performance liquid chromatography‐tandem mass spectrometry method for the determination of chiisanogenin in rat plasma and to investigate its pharmacokinetics after oral administration of chiisanogenin or the extract of Acanthopanax sessiliflorus fruits. Methodology – The sample pretreatment involved a one‐step extraction of 0.2 mL plasma with diethyl ether. Acetaminophen was used as the internal standard. The separation was carried out on an ACQUITY UPLC? BEH C18 column with a mobile phase of acetonitrile‐5 mM ammonium acetate (90:10, v/v) at a flow rate of 0.2 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) mode via electrospray ionization (ESI) source. Results – A high sample throughput was achieved with an analysis time of 1.1 min per sample. The calibration curve was linear (r2 ≥ 0.99) over the concentration range of 5–500 ng/mL with a lower limit of quantification (LLOQ) of 5 ng/mL. The intra‐day and inter‐day precision (relative standard deviation, R.S.D.) values were below 11% and the accuracy (relative error, R.E.) was within 8% at all three quality control (QC) levels. Conclusion – The method was successfully applied to the pharmacokinetic study of chiisanogenin in rat after oral administration of chiisanogenin and the extract of Acanthopanax sessiliflorus fruits. Other constituents in the extract affected the pharmacokinetic behavior of chiisanogenin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A simple, rapid, sensitive and specific ultra performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method was developed and validated for the quantification of ethosuximide in human plasma is described. Analyte was chromatographed on a Hypersil Gold C18 column (100 mm × 2.1 mm, i.d., 1.9 μm) with isocratic elution at a flow rate of 0.250 mL/min and pravastatin was used as the internal standard. The assay involves a simple solid-phase extraction procedure of 0.25 mL human plasma and the analysis was performed on a triple-quadrupole tandem mass spectrometer by MRM mode via electrospray ionization (ESI). The method was linear in the concentration range of 0.25–60.0 μg/mL. The lower limit of quantification (LLOQ) was 0.25 μg/mL. The within- and between-day precision and accuracy of the quality control samples were within 10.0%. The recovery was 95.1% and 94.4% for ethosuximide and pravastatin, respectively. The analysis time for each sample was 1.8 min. The method was highly reproducible and gave peaks with excellent chromatography properties.  相似文献   

10.
Melatonin is a hormone mainly involved in the regulation of circadian and seasonal rhythms in both invertebrates and vertebrates. Despite the identification of melatonin in many insects, its involvement in the insect seasonal response remains unclear. A liquid chromatography tandem mass spectrometry (LC–MS/MS) method has been developed for melatonin analysis in aphids (Acyrthosiphon pisum) for the first time. After comparing two different procedures and five extraction solvents, a sample preparation procedure with a mixture of methanol/water (50:50) was selected for melatonin extraction. The method was validated by analyzing melatonin recovery at three spiked concentrations (5, 50 and 100 pg/mg) and showed satisfactory recoveries (75–110%), and good repeatability, expressed as relative standard deviation (<10%). Limits of detection (LOD) and quantitation (LOQ) were 1 pg/mg and 5 pg/mg, respectively. Eight concentration levels were used for constructing the calibration curves which showed good linearity between LOQ and 200 times LOQ. The validated method was successfully applied to 26 aphid samples demonstrating its usefulness for melatonin determination in insects. This is -to our knowledge- the first identification of melatonin in aphids by LC–MS/MS.  相似文献   

11.
A rapid and sensitive LC–MS/MS method for the determination of vardenafil and its major metabolite, N-desethylvardenafil, in human plasma using sildenafil as an internal standard was developed and validated. The analytes were extracted from 0.25-mL aliquots of human plasma by liquid–liquid extraction, using 1 mL of ethyl acetate. Chromatographic separation was carried on a Luna C18 column (50 mm × 2.0 mm, 3 μm) at 40 °C, with an isocratic mobile phase consisting of 10 mM ammonium acetate (pH 5.0) and acetonitrile (10:90, v/v), a flow rate of 0.2 mL/min, and a total run time of 2 min. Detection and quantification were performed using a mass spectrometer in the selected reaction-monitoring mode with positive electrospray ionization at m/z 489.1  151.2 for vardenafil, m/z 460.9  151.2 for N-desethylvardenafil, and m/z 475.3  100.1 for the internal standard (IS), respectively. This assay was linear over a concentration range of 0.5–200 ng/mL with a lower limit of quantification of 0.5 ng/mL for both vardenafil and N-desethylvardenafil. The coefficient of variation for the assay precision was <13.6%, and the accuracy was >93.1%. This method was successfully applied to a pharmacokinetic study after oral administration of vardenafil 20 mg tablet in Korean healthy male volunteers.  相似文献   

12.
A rapid, selective and sensitive high performance liquid chromatography–tandem mass spectrometry method (LC–MS/MS) was developed and validated for the determination and pharmacokinetic investigation of cefuroxime in human plasma. Cefuroxime and the internal standard (IS), cefoxitin, were extracted from plasma samples using solid phase extraction with Oasis HLB cartridges. Chromatographic separation was performed on a LiChrospher® 60 RP Select B column (125 mm × 4 mm i.d., 5 μm particle size) using acetonitrile:5 ± 0.2 mM ammonium acetate solution:glacial acetic acid (70:30:0.020, v/v/v) as the mobile phase at a flow rate of 0.8 mL/min. Detection of cefuroxime and cefoxitin was achieved by tandem mass spectrometry with an electrospray ionization (ESI) interface in negative ion mode. The calibration curves were linear over the range of 81.0–15976.2 ng/mL with the lower limit of quantitation validated at 81.0 ng/mL. The intra- and inter-day precisions were within 7.6%, while the accuracy was within ±6.3% of nominal values. No matrix effect was observed in this method. The validated LC–MS/MS method was successfully applied for the evaluation of pharmacokinetic and bioequivalence parameters of cefuroxime after an oral administration of 500 mg cefuroxime tablet to 36 healthy male volunteers.  相似文献   

13.
A new sensitive and specific method using liquid chromatography/tandem mass spectrometry for determination of bryostatin 1 was developed and validated. Sample pretreatment involved a double liquid-liquid extraction step with a mixture of acetonitrile/n-butyl chloride (1/4, v/v). Separation of the compound of interest, including the internal standard paclitaxel, was achieved on a Waters X-Terra C18 (50 x 2.1 mm i.d., 3.5 microm) analytical column with acetonitrile/water mobile phase (80:20, v/v) containing 0.1% formic acid using isocratic flow at 0.15 mL/min for 13 min. The analytes of interest were monitored by tandem mass spectrometry with electrospray positive ionization. The linear calibration curves were generated over the range of 50-2000 pg/mL with values for the coefficient of determination of >0.99. The values for both within-day and between-day precision and accuracy were <15%. This method was used to characterize the plasma pharmacokinetics of bryostatin 1 at doses of 20 microg/m2) to optimize treatment with this agent.  相似文献   

14.
Nateglinide (NTG), an insulin secretogogue, has been studied in rats for drug-drug interaction with cilostazol (CLZ), an antiplatelet agent commonly used in diabetics. We developed a liquid chromatography tandem mass spectrometry (LC-MS/MS) based method that is capable of simultaneous monitoring plasma levels of nateglinide, cilostazol, and its active metabolite 3,4-dehydro-cilostazol (DCLZ). All analytes including the internal standard (Repaglinide) were chromatographed on reverse phase C(18) column (50 mm x 4.6mm i.d., 5 microm) using acetonitrile: 2mM ammonium acetate buffer, pH 3.4 (90:10, v/v) as mobile phase at a flow rate 0.4 ml/min in an isocratic mode. The detection of analyte was performed on LC-MS/MS system in the multiple reaction monitoring (MRM) mode. The quantitations for analytes were based on relative concentration. The method was validated over the concentration range of 20-2000 ng/ml and the lower limit of quantitation was 20 ng/ml. The recoveries from spiked control samples were >79% for all analytes and internal standard. Intra- and inter-day accuracy and precision of validated method were with in the acceptable limits of <15% at all concentration. The quantitation method was successfully applied for simultaneous estimation of NTG, CLZ and DCLZ in a pharmacokinetic drug-drug interaction study in Wistar rats.  相似文献   

15.
We have studied rapid and simple sugar mapping using liquid chromatography/electrospray ionization mass spectrometry (LC/MS) equipped with a graphitized carbon column. The oligosaccharide mixture was separated on the basis of the sequence, branching structure, and linkage, and each oligosaccharide was characterized based on its molecular mass. In this study we demonstrated the usefulness of capillary LC/MS (CapLC/MS) and capillary liquid chromatography/tandem mass spectrometry (CapLC/MS/MS) as sensitive means for accomplishing the structural analysis of oligosaccharides in a low-abundance glycoprotein. The carbohydrate heterogeneity and molecular mass information of each oligosaccharide can be readily obtained from CapLC/MS of a small amount of glycoprotein. CapLC/MS/MS provided b-ion series, which is informative with regard to monosaccharide sequence. Exoglycosidase digestion followed by CapLC/MS elucidated a carbohydrate residue linkage. Using this method, we characterized N-linked oligosaccharides in hepatocyte growth factor produced in mouse myeloma NS0 cells as the complex-type bi-, tri-, and tetraantennary terminated with N-glycolylneuraminic acids and alpha-linked galactose residues. Sugar mapping with CapLC/MS and CapLC/MS/MS is useful for monitoring glycosylation patterns and for structural analysis of carbohydrates in a low-abundance glycoprotein and thus will become a powerful tool in biological, pharmaceutical, and clinical studies.  相似文献   

16.
A sensitive liquid chromatography/tandem mass spectrometric (LC-MS/MS) method was developed and validated for the determination of rosuvastatin in human plasma. The plasma samples were prepared using liquid-liquid extraction with ethyl ether. Chromatographic separation was accomplished on a Zorbax XDB-C18 (150 mm x 4.6 mm i.d., 5 microm) column. The mobile phase consisted of methanol-water (75:25, v/v, adjusted to pH 6 by aqueous ammonia). Detection of rosuvastatin and the internal standard (IS) hydrochlorothiazide was achieved by ESI MS/MS in the negative ion mode. The lower limit of quantification was 0.020 ng/ml by using 200 microl aliquots of plasma. The linear range of the method was from 0.020 to 60.0 ng/ml. The intra- and inter-day precisions were lower than 8.5% in terms of relative standard deviation (RSD), and the accuracy was within -0.3 to 1.9% in terms of relative error (RE). Compared with the existing methods, the validated method offered increased sensitivity. The method was successfully applied for the evaluation of pharmacokinetics of rosuvastatin after single oral doses of 5, 10 and 20 mg rosuvastatin to 10 healthy volunteers.  相似文献   

17.
A simple method using a one-step liquid-liquid extraction (LLE) with methyl-t-butyl ether (MTBE) followed by high-performance liquid chromatography (HPLC) with negative-ion electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the determination of cilnidipine in human plasma using benidipine as an internal standard (IS). Acquisition was performed in multiple reaction monitoring (MRM) mode, by monitoring the transitions: m/z 491.1>121.8 for cilnidipine and m/z 504.2>122.1 for IS, respectively. Analytes were chromatographed on a CN column by isocratic elution using 10mM ammonium acetate buffer-methanol (30:70, v/v; adjusted with acetic acid to pH 5.0). Results were linear (r2=0.99998) over the studied range (0.1-20ng/ml) with a total LC-MS/MS analysis time per run of 3min. The developed method was validated and successfully applied to a cilnidipine bioequivalence study in 24 healthy male volunteers.  相似文献   

18.
A simple, rapid, sensitive and specific liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of metoprolol tartrate (MT) and ramipril, in human plasma. Both the drugs were extracted by liquid-liquid extraction with diethyl ether-dichloromethane (70:30, v/v). The chromatographic separation was performed on a reversed-phase C8 column with a mobile phase of 10 mM ammonium formate-methanol (3:97, v/v). The protonated analyte was quantitated in positive ionization by multiple reaction monitoring with a mass spectrometer. The method was validated over the concentration range of 5-500 ng/ml for metoprolol and ramipril in human plasma. The precursor to product ion transitions of m/z 268.0-103.10 and m/z 417.20-117.20 were used to measure metoprolol and ramipril, respectively.  相似文献   

19.
A rapid, sensitive and specific method was developed and validated using liquid chromatography-tandem mass spectrometry (LC/MS/MS) for determination of gefitinib in human plasma and mouse plasma and tissue. Sample preparation involved a single protein precipitation step by the addition of 0.1 mL of plasma or a 200 mg/mL tissue homogenate diluted 1/10 in human plasma with 0.3 mL acetonitrile. Separation of the compounds of interest, including the internal standard (d8)-gefitinib, was achieved on a Waters X-Terra C18 (50 mm x 2.1 mm i.d., 3.5 microm) analytical column using a mobile phase consisting of acetonitrile-water (70:30, v/v) containing 0.1% formic acid and isocratic flow at 0.15 mL/min for 3 min. The analytes were monitored by tandem mass spectrometry with electrospray positive ionization. Linear calibration curves were generated over the range of 1-1000 ng/mL for the human plasma samples and 5-1000 ng/mL for mouse plasma and tissue samples with values for the coefficient of determination of > 0.99. The values for both within- and between-day precision and accuracy were well within the generally accepted criteria for analytical methods (< 15%). This method was subsequently used to measure concentrations of gefitinib in mice following administration of a single dose of 150 mg/kg intraperitoneally and in cancer patients receiving an oral daily dose of 250 mg.  相似文献   

20.
A rapid, sensitive and specific high performance liquid chromatography-electrospray ionization tandem quadrupole mass spectrometry (HPLC-MS/MS) method was developed and validated for the determination of 3-n-butylphthalide in rat plasma. Following protein precipitation with acetonitrile, 3-n-butylphthalide and glipizide (internal standard, I.S.) were separated using a gradient elution program on a C18 column and detected by mass spectrometry in positive ion mode with the multiple reaction monitoring (MRM) mode using the respective precursor to product ion combinations of m/z 191/145 for 3-n-butylphthalide and m/z 446/321 for glipizide, respectively. The total chromatographic running time was 2.5 min. The method was linear over the concentration range of 11.14-3480.00 ng/mL, using as little as 100 microL plasma. The lower limit of quantification (LLOQ) was 5.57 ng/mL. Finally, the method was successfully used to support a preclinical pharmacokinetic study of 3-n-butylphthalide in rats following intravenous administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号