首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
AIMS: To determine the factors affecting the release, stability and binding of bovicin HC5 to sensitive bacteria. METHODS AND RESULTS: Stationary phase Streptococcus bovis HC5 cultures had little cell-free bovicin HC5 activity until the final pH was <5.0, and even more bacteriocin was released by treatment with acidic NaCl (pH 2.0, 100 mmol l(-1)). Cultures grown with Tween 80 had more cell-free bovicin HC5 than untreated controls, but this nonionic detergent enhanced activity rather than release. Bovicin HC5 binding to S. bovis JB1 (a susceptible strain) was greater at pH values <6.0. Bovicin HC5 bound other sensitive Gram-positive bacteria, but not Gram-negative species. Cultures retained most of their activity for 35 days, but only if the final pH was <5.6. If the final pH was >5.6, peptidases destroyed much of the activity. CONCLUSIONS: Bovicin HC5 remains cell associated until the culture pH is <5.0, but it can be easily dissociated from the cell surface by acidic NaCl. It is highly stable in acidic environments and only binds sensitive bacteria at pH values <6.0. SIGNIFICANCE AND IMPACT OF THE STUDY: Streptococcus bovis HC5 does not have generally regarded as safe status. However, bovicin HC5 has a broad spectrum of activity and sensitive bacteria do not become resistant. Based on these results, bovicin HC5 may be a useful bacteriocin model.  相似文献   

3.
Aims:  To test the effect of bovicin HC5 against vegetative cells and endospores of Alicyclobacillus acidoterrestris DSMZ 2498 in synthetic media and in acidic mango pulp.
Methods and Results:  Alicyclobacillus acidoterrestris was grown in synthetic medium at 40°C and pH 4·0. The effect on vegetative cells was assayed by adding bovicin HC5 to synthetic medium (40–160 AU ml−1) or to mango pulp (100 AU ml−1) at various pH values and determining the effect on growth (OD600nm) and viable cell number, respectively. The effect of bovicin HC5 on spore germination and thermal sensitivity of A. acidoterrestris was tested in mango pulp (pH 4·0) containing 80 AU ml−1 of bovicin HC5. Bovicin HC5 was bactericidal against vegetative cells of A. acidoterrestris at different pH values and showed sporicidal activity against endospores of this bacterium. When spores of A. acidoterrestris were heat treated in the presence of bovicin HC5, D -values decreased 77% to 95% compared to untreated controls at temperatures ranging from 80 to 95°C.
Conclusion:  Bovicin HC5 was bactericidal and sporicidal against A. acidoterrestrsi DSMZ 2498.
Significance and Impact of the Study:  These results indicated that bovicin HC5 has potential to prevent spoilage of acidic fruit juices by thermocidophilic spore-forming bacteria.  相似文献   

4.
A bacteriocin-producing Streptococcus bovis strain (HC5) outcompeted a sensitive strain (JB1) before it reached stationary phase (pH 6.4), even though it grew 10% slower and cell-free bovicin HC5 could not yet be detected. The success of bacteriocin-negative S. bovis isolates was enhanced by the presence of another sensitive bacterium (Clostridium sticklandii SR). PCR based on repetitive DNA sequences indicated that S. bovis HC5 was not simply transferring bacteriocin genes to S. bovis JB1. When the two S. bovis strains were coinoculated into minimal medium, bacteriocin-negative isolates predominated, and this effect could be explained by the longer lag time (0.5 vs. 1.5 h) of S. bovis HC5. If the glucose concentration of the minimal medium was increased from 2 to 7 mg mL(-1), the effect of lag time was diminished and bacteriocin-producing isolates once again dominated the coculture. When the competition was examined in continuous culture, it became apparent that batch culture inocula were never able to displace a strain that had already reached steady state, even if the inoculum was large. This result indicated that bacterial selection for substrate affinity was even more important than bacteriocin production.  相似文献   

5.
Aims:  To investigate the effect of media composition and agroindustrial residues on bovicin HC5 production by Streptococcus bovis HC5.
Methods and Results:  Batch cultures of S. bovis HC5 were grown in basal medium containing different carbon and nitrogen sources. The activity of cell-free and cell-associated bovicin HC5 was determined in culture supernatants and acidic extracts obtained from cell pellets, respectively. Streptococcus bovis HC5 produced bovicin using a variety of carbon and nitrogen sources. The highest specific activity was obtained in media containing 16 g l−1 of glucose, after 16 h of incubation. The peak in cell-free and cell-associated bovicin HC5 activity was detected when S. bovis HC5 cultures reached stationary phase. The bovicin HC5 specific activity and bacterial cell mass increased approximately 3-fold when yeast extract and trypticase (0·5 and 1·0 g l−1, respectively) were added together to the basal medium. Streptococcus bovis HC5 cultures produced bovicin HC5 in cheese whey and sugar cane juice and maximal volumetric productivity was obtained after 12 h of incubation.
Conclusions:  Streptococcus bovis HC5 is a versatile lactic acid bacterium that can utilize several carbon and nitrogen sources for bovicin HC5 production. This bacterium could be a useful model to study bacteriocin production in the rumen ecosystem.
Significance and Impact of the Study:  The use of agroindustrial residues as carbon sources could have an economical impact on bovicin HC5 production. To our knowledge, this is the first report to show the use of sugar cane juice for bacteriocin production by lactic acid bacteria.  相似文献   

6.
7.
Fusobacterium necrophorum can readily be enriched from the rumen with lysine, and its deamination rate is very rapid. The addition of F. necrophorum JB2 to mixed ruminal bacteria significantly increased lysine degradation, but only if the ratio of ruminal fluid to basal medium was less than 25%. If more ruminal fluid (pH 6.1) was added, ammonia production decreased by as much as 80%. Clarified, autoclaved ruminal fluid was also inhibitory. When F. necrophorum JB2 was grown in a lysine-limited continuous culture (0.1 h(-1) dilution rate) and pH was decreased using HCl, optical density decreased linearly, and the culture washed out at pH 5.6. Batch cultures of F. necrophorum JB2 deaminated as much lysine at pH 6.1 as at pH 6.6, but only if fermentation acids were not present. Sodium acetate (100 mM) had little effect at pH 6.6, but the same concentration inhibited ammonia production by 80% at pH 6.1. The idea that fermentation acids could prevent the enrichment of fusobacteria in vivo was supported by the observation that dietary lysine supplementation did not enhance the lysine deamination rate of the mixed ruminal bacteria.  相似文献   

8.
Streptococcus bovis HC5 produces a broad spectrum lantibiotic (bovicin HC5), but S. bovis JB1 does not have antimicrobial activity. Preliminary experiments revealed an anomaly. When S. bovis JB1 cells were washed in stationary phase S. bovis HC5 cell-free culture supernatant, the S. bovis JB1 cells were subsequently able to inhibit hyper-ammonia producing ruminal bacteria (Clostridium sticklandii, Clostridium aminophilum and Peptostreptococcus anaerobius). Other non-bacteriocin producing S. bovis strains also had the ability to bind and transfer semi-purified bovicin HC5. Bovicin HC5 that was bound to S. bovis JB1 was much more resistant to Pronase E than cell-free bovicin HC5, but it could be inactivated if the incubation period was 24 h. Acidic NaCl treatment (100 mM, pH 2.0) liberates half of the bovicin HC5 from S. bovis HC5, but it did not prevent bovicin HC5 from binding to S. bovis JB1. Acidic NaCl liberated some bovicin HC5 from S. bovis JB1, but the decrease in activity was only 2-fold. Bovicin HC5 is a positively charged peptide, and the ability of S. bovis JB1 to bind bovicin HC5 could be inhibited by either calcium or magnesium (100 mM). Acidic NaCl-treated S. bovis JB1 cells were unable to accumulate potassium, but they were still able to bind bovicin HC5 and prevent potassium accumulation by untreated S. bovis JB1 cells. Based on these results, bovicin HC5 bound to S. bovis JB1 cells still acts as a pore-forming lantibiotic.  相似文献   

9.
10.
11.
Aims: To examine the prevalence of bacteriocin production in Streptococcus bovis isolates from Australian ruminants and the feasibility of industrial production of bacteriocin. Methods and Results: Streptococcus bovis strains were tested for production of bacteriocin‐like inhibitory substances (BLIS) by antagonism assay against Lactococcus lactis. BLIS production was associated with source animal location (i.e. proximity of other bacteriocin‐positive source animals) rather than ruminant species/breed or diet. One bacteriocin showing strong inhibitory activity (Sb15) was isolated and examined. Protein sequence, stability and activity spectrum of this bovicin were very similar to bovicin HC5. Production could be increased through serial culturing, and increased productivity could be partially maintained during cold storage of cultures. Conclusions: BLIS production is geographically widely distributed in Eastern Australia, and it appears that the bacteriocin+ trait is maintained in animals at the same location. The HC5‐like bacteriocin, originally identified in North America, is also found in Australia. Production of bacteriocin can be increased through serial culturing. Significance and Impact of the Study: The HC5‐like bacteriocins appear to have a broad global distribution. Serial culturing may provide a route towards commercial manufacturing for use in industrial applications, and purified bacteriocin from S. bovis Sb15 could potentially be used to prevent food spoilage or as a feed additive to promote growth in ruminant species.  相似文献   

12.
Mixed ruminal bacteria, isolated from sheep (Q and W) fed a concentrate and hay diet, were anaerobically incubated with either 14C-peptides or 14C-amino acids. Experiment 1 showed that uptake of both 14C-labeled substrates was rapid, but the rate for amino acids was twofold greater than for peptides (molecular weight, 1,000 to 200) initially but was similar after 10 min. Experiment 2 demonstrated that metabolism was also rapid; at least 90% of either 14C-labeled substrate was metabolized by 3 min. Of the radioactivity remaining in bacteria, approximately 30% was in the form of 14C-amino acids, but only in leucine, tyrosine, and phenylalanine. Supernatant radioactivity was contained only in tyrosine, phenylalanine, and mostly proline for incubations with 14C-amino acids but in up to 10 amino acids when 14C-peptides were the substrates. Short-term incubations (< 5 min; experiment 3) confirmed previous uptake patterns and showed that the experimental system was responsive to substrate competition. Experiment 4 demonstrated that bacteria from sheep Q possessed initial and maximum rates of 14C-amino acid uptake approximately fourfold greater (P < 0.01) than those of 14C-peptides, but with no significant differences (P > 0.1) between four 14C-peptide substrate groups with molecular weights of 2,000 to < 200. By contrast, bacteria from sheep W showed no such distinctions (P > 0.1) between rates for 14C-peptides and 14C-amino acids. Calculations suggested that peptides could supply from 11 to 35% and amino acids could supply from 36 to 68% of the N requirements of mixed ruminal bacteria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Abstract Streptococcus bovis and Selenomonas ruminantium grew in the presence of the glucose analog, 2-deoxyglucose (2-DG), but the cells no longer had high affinity glucose transport. In S. bovis , 2-DG resistance was correlated with a decrease in phosphoenolpyruvate (PEP)-dependent glucose phosphotransferase (PTS) activity. The 2-DG-selected S. bovis cells relied solely upon a low affinity, facilitated diffusion mechanism of glucose transport and a 2-DG-resistant glucokinase (ATP-dependent). The glucokinase activity of S. ruminantium was competitively inhibited by 2-DG, and the 2-DG selected cells continued to use PEP-dependent PTS as a mechanism of glucose transport. In this latter case, the 2-DG selected cells switched from a mannosephosphotransferase (enzyme II) that phosphorylated glucose, mannose, and 2-DG, but not α-methylglucoside to a glucosephosphotransferase (enzyme II) that phosphorylated glucose and α-methylglucoside but not 2-DG or mannose. The glucosephosphotransferase (enzyme II) had a very low affinity for glucose and the transport kinetics were similar to the facilitated diffusion system of S. bovis .  相似文献   

14.
Summary. In vitro studies were conducted to examine the metabolism of methionine (Met) and threonine (Thr) using mixed ruminal bacteria (B), mixed ruminal protozoa (P), and a combination of these two (BP). Rumen microorganisms were collected from fistulated goats fed with lucerne cubes (Medicago sativa) and a concentrate mixture twice a day. Microbial suspensions were anaerobically incubated with or without 1 mM each of the substrates at 39°C for 12 h. Met, Thr and their related amino compounds in both the supernatants and microbial hydrolyzates of the incubation were analyzed by HPLC. Met was degraded by 58.7, 22.1, and 67.3% as a whole in B, P, and BP suspensions, respectively, during 12 h incubation. In the case of Thr, these values were 67.3, 33.4, and 76.2% in B, P, and BP, respectively. Met was catabolized by all of the three microbial suspensions to methionine sulfoxide and 2-aminobutyric acid. Catabolism of Thr by B and BP resulted in the production of glycine and 2-aminobutyric acid, while P produced only 2-aminobutyric acid. From these results, the existence of diverse catabolic routes of Met and Thr in rumen microorganisms was indicated. Received August 2, 2000 Accepted February 27, 2001  相似文献   

15.
This in vitro study aimed at estimating the disappearance rates of 14 terpenes and terpenoids after 24-h incubation with mixed bacteria from caprine rumens. These compounds comprised nine monoterpene hydrocarbons (δ-3-carene, p-cymene, β-myrcene, (E)- and (Z)-β-ocimene, α-phellandrene, α-terpinene, γ-terpinene and α-terpinolene), four oxygenated monoterpenes ((E)- and (Z)-linalool oxide, 4-terpinenol, α + γ terpineol) and one sesquiterpene hydrocarbon (β-cedrene). They were individually exposed to goat rumen microflora for 24 h in 70 ml culture tubes at an input level of 0.5 ml/l. Terpenoids were the least degraded, 100% of (E)-linalool oxide, 95% of (Z)-linalool oxide, 91% of 4-terpinenol and 75% of terpineol remained intact after 24-h incubation. In contrast, α-terpinolene concentration in fermentation broth extracts was below quantification limit, thus indicating an extensive, if not complete, degradation by rumen bacteria. Only 2% of the initial amounts of α-phellandrene were recovered. The other monoterpenes and β-cedrene were partly degraded, with losses ranging from 67% for δ-3-carene to 90% for (E)-β-ocimene. The corresponding rates of disappearance were between 2.67 and 4.08 μmol/ml inoculum per day.  相似文献   

16.
A Pseudomonas monteilli strain (designated C11) that uses the phosphotriester coroxon as its sole phosphorus source has been isolated. Native PAGE and activity staining identified a single isozyme with significant phosphotriesterase activity in the soluble fraction of the cell. This phosphotriesterase could hydrolyse both coumaphos and coroxon. The hydrolysis product of coroxon, diethylphosphate, and the thion analogue, coumaphos, could not serve as phosphorus sources when added to the growth medium. The majority of the phosphotriesterase and phosphatase activity was contained in the soluble fraction of the cell. Phosphatase activity was inhibited by vanadate as well as by dialysis against the metal chelator, EDTA. Phosphotriesterase activity was not affected by either vanadate or dialysis with EDTA or 1,10-phenanthroline. Phosphotriesterase activity was regulated by the amounts of both phosphate and coroxon in the medium, whereas total phosphatase activity was regulated by phosphate but not coroxon. A lack of hybridisation using a probe against the opd (organophosphate degradation) gene encoding a phosphotriesterase from Flavobacterium sp. ATCC27551 against bulk DNA from P. monteilli C11 suggested that this strain does not contain opd. The work presented here indicates the presence of a novel phosphotriesterase in P. monteilli C11.  相似文献   

17.
In recent years, advances in plant breeding were achieved, which potentially led to modified nutritional values of cereal grains. The present study was conducted in order to obtain a broad overview of ruminal digestion kinetics of rye, triticale and barley grains, and to highlight differences between the grain species. In total, 20 genotypes of each grain species were investigated using in situ and in vitro methods. Samples were ground (2 mm), weighed into polyester bags, and incubated in situ 1 to 48 h in three ruminally cannulated lactating dairy cows. The in vitro gas production of ground samples (1 mm) was measured according to the ‘Hohenheim Gas Test’, and cumulative gas production was recorded over different time spans for up to 72 h. There were significant differences (P<0.05) between the species for most parameters used to describe the in situ degradation of starch (ST) and dry matter (DM). The in situ degradation rate (c) and effective degradability (assuming a passage rate of 8%/h; ED8) of ST differed significantly between all grains and was highest for rye (rye: 116.5%/h and 96.2%; triticale: 85.1%/h and 95.0%; barley: 36.2%/h and 90.0% for c and ED8, respectively). With respect to DM degradation, the ranking of the species was similar, and predicted c values exhibited the highest variation within species. The in vitro gas production rate was significantly higher (P<0.05) for rye than for triticale and barley (rye: 12.5%/h; triticale: 11.5%/h; barley: 11.1%/h). A positive relationship between the potential gas production in vitro and the maximal degradable DM fraction in situ was found using all samples (r=0.84; P<0.001) as well as rye (P=0.002) and barley (P<0.001) alone, but not for triticale. Variation in ruminal in situ degradation parameters within the grain species resulted from the high c values, but was not reflected in the ED estimates. Therefore, the usage of mean values for the ED of DM and ST for each species appears reasonable. Estimated metabolisable energy concentrations (ME, MJ/kg DM) and the estimated digestibility of organic matter (dOM, %) were significantly lower (P<0.05) for barley than for rye and triticale. Rye and triticale dOM and ME values were not significantly different (P=0.386 and 0.485).  相似文献   

18.
Tryptophan (Trp) biosynthesis and the production of other related compounds by mixed ruminal bacteria (B), protozoa (P), and their mixture (BP) in an in vitro system were quantitatively investigated by using 1 mM of indole-3-pyruvic acid (IPA) as substrate. Ruminal microorganisms were anaerobically incubated at 39 degrees C for 12 h. Trp and other related compounds in both the supernatants and the microbial hydrolyzates of the incubation were analyzed by HPLC. As a whole, about 334, 440, and 436 &mgr;M of Trp were produced from IPA in 12 h by B, P, and BP suspensions, respectively. In the B suspension, a greater portion of synthesized Trp (242 &mgr;M) from IPA was accumulated as free form in the medium, whereas a large amount of Trp (92 &mgr;M) was incorporated into cell protein in a 12-h incubation. On the other hand, in the P suspension, a large amount of Trp (475 &mgr;M) from IPA was also found as free form in the supernatant in a 12-h incubation. Protozoa did not incorporate Trp into cell protein, but they liberated endogenous Trp (34 &mgr;M) into the medium. The net productions of Trp from IPA were 344.3 and 447.7 &mgr;mol/g of microbial nitrogen in 12 h by B and P suspensions, respectively. The ability of P to synthesize Trp from IPA was about 30% higher than that of B in 12 h. Trp produced from IPA by B, P, and BP suspensions were simultaneously degraded into its related compounds, and among them, indoleacetic acid (IAA) was a major product found in all microbial suspensions. Productions of IAA were 124, 25, and 99 &mgr;M from IPA in 12 h by B, P, and BP suspensions, respectively. The formation of indolelactic acid (ILA) from IPA was observed for the first time in all microbial suspensions, and it was about 84, 24, and 54 &mgr;M in 12 h by B, P, and BP, respectively. Higher IAA and ILA productions were observed in B when compared with P. A small amount of skatole (SKT) (26 &mgr;M) was produced from IPA in B, whereas a sizable amount of SKT (38 &mgr;M) was found in BP after a 12-h incubation. p-Cresol (CRL) was also produced from IPA by both B (43 &mgr;M) and BP (65 &mgr;M) suspensions in 12 h, and this is also the first discovery to show the formation of CRL from IPA by B and BP suspensions. BP suspension was more active to produce both SKT and CRL from IPA, though P suspension has no ability to produce either SKT or CRL from IPA during a 12-h incubation.  相似文献   

19.
Amongst 100 isolates of lactic acid bacteria, Lactobacillus bulgaricus and Streptococcus feacalis proved to be highly proteolytic as demonstrated by starch gel electrophoresis and liberation of various amino acids. Both these organisms hydrolysed casein differently to produce different concentrations of amino acids.  相似文献   

20.
The possibility of histidine (His) synthesis using a main biosynthetic pathway involving histidinol (HDL) and also the recycling capability of imidazolic compounds such as imidazolepyruvic acid (ImPA), imidazoleacetic acid (ImAA), and imidazolelactic acid (ImLA) to produce His were investigated using mixed ruminal bacteria (B), protozoa (P), and a mixture of both (BP) in an in vitro system. Rumen microorganisms were anaerobically incubated at 39 degrees C for 18 h with or without each substrate (2 mM) mentioned. His and other related compounds produced in both the supernatants and hydrolyzates of the incubation were analyzed by high-performance liquid chromatography. B, P, and BP suspensions failed to show His synthesizing ability when incubated with HDL. His was synthesized from ImPA by B, P, and BP. Expressed in units "per gram of microbial nitrogen (MN)", ImPA disappearance was greatest in B (72.7 micromol/g MN per hour), followed by BP (33.13 micromol/g MN per hour) and then P (18.6 micromol/g MN per hour) for the 18-h incubation period. The production of His from ImPA in B (240.0, 275.9, and 261.2 micromol/g MN in 6, 12, and 18 h incubation, respectively) was about 3.5 times higher than that in P (67.3, 83.8, and 72.7 micromol/g MN in 6, 12, and 18 h incubation, respectively). Other metabolites produced from ImPA were ImLA, ImAA, histamine (HTM), and urocanic acid (URA), found in all microbial suspensions. ImLA as a substrate remained without diminution in all microbial suspensions. Although ImAA was found to be degraded to a small extent (3.4-6.3%) only after 18 h incubation, neither His nor other metabolites were detected on the chromatograms. These results have been demonstrated for the first time in rumen microorganisms and suggest that His may be an essential amino acid for rumen microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号