首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human immunodeficiency virus type-1 (HIV-1) and hepatitis C virus (HCV) are transfusion-transmitted human pathogens that have a major impact on blood safety and public health. Based on multiplex asymmetrical PCR and coupled with gold labelled silver stain (GLSS), we developed the visual DNA microarray for sensitive and specific detection of these two viruses. Capturing probes of 5′-end-amino-modified oligonucleotides were immobilized on glass surface to bind the complement biotinylated target DNA. The Au–streptavidin probe was introduced to the microarray for specific binding to biotin. Black images of microarray spots which result from the precipitation of silver onto Au–streptavidin probes, were visualized by naked eyes. In order to improve the efficiency of microarray hybridization, triplex asymmetrical PCR of HIV-1, HCV and Human enterovirus 71 (EV-71, used as positive control) were performed to prepare abundant biotinylated single-stranded target DNA. The sensitivity of visual DNA microarray (103 copies/ml) was higher than conventional PCR (104 copies/ml) and was identical to FQ-PCR (103 copies/ml). Total 152 blood samples containing the two viruses were tested using the DNA microarray and fluorescence quantitative real-time PCR (FQ-PCR). The results were identical (P > 0.05). So this system has high sensitivity and may have potential in clinical applications.  相似文献   

2.
Colorimetric silver detection of DNA microarrays   总被引:14,自引:0,他引:14  
Development of microarrays has revolutionized gene expression analysis and molecular diagnosis through miniaturization and the multiparametric features. Critical factors affecting detection efficiency of targets hybridization on microarray are the design of capture probes, the way they are attached to the support, and the sensitivity of the detection method. Microarrays are currently detected in fluorescence using a sophisticated confocal laser-based scanner. In this work, we present a new colorimetric detection method which is intented to make the use of microarray a powerful procedure and a low-cost tool in research and clinical settings. The signal generated with this method results from the precipitation of silver onto nanogold particles bound to streptavidin, the latter being used for detecting biotinylated DNA. This colorimetric method has been compared to the Cy-3 fluorescence method. The detection limit of both methods was equivalent and corresponds to 1 amol of biotinylated DNA attached on an array. Scanning and data analysis of the array were obtained with a colorimetric-based workstation.  相似文献   

3.
A small-oligonucleotide microarray prototype was designed with probes specific for the universal 16S rRNA and cpn60 genes of several pathogens that are usually encountered in wastewaters. In addition to these two targets, wecE-specific oligonucleotide probes were included in the microarray to enhance its discriminating power within the Enterobacteriaceae family. Universal PCR primers were used to amplify variable regions of 16S rRNA, cpn60, and wecE genes directly in Escherichia coli and Salmonella enterica serovar Typhimurium genomic DNA mixtures (binary); E. coli, S. enterica serovar Typhimurium, and Yersinia enterocolitica genomic DNA mixtures (ternary); or wastewater total DNA. Amplified products were fluorescently labeled and hybridized on the prototype chip. The detection sensitivity for S. enterica serovar Typhimurium was estimated to be on the order of 0.1% (10(4) S. enterica genomes) of the total DNA for the combination of PCR followed by microarray hybridization. The sensitivity of the prototype could be increased by hybridizing amplicons generated by PCR targeting genes specific for a bacterial subgroup, such as wecE genes, instead of universal taxonomic amplicons. However, there was evidence of PCR bias affecting the detection limits of a given pathogen as increasing amounts of a different pathogen were spiked into the test samples. These results demonstrate the feasibility of using DNA microarrays in the detection of waterborne pathogens within mixed populations but also raise the problem of PCR bias in such experiments.  相似文献   

4.
To detect and identify the pathogens responsible for sexually transmitted diseases (STDs) at the early stage of infection and with a high throughput, a new microarray with a bifunctional probe modification was prepared using Neisseria gonorrhoeae, Chlamydia trachomatis and Ureaplasma urealyticum as a model system. During the fabrication of the microarray, an asymmetric fluorescently labeled multiplex PCR was introduced. The fabrication optimization proved that the best hybridization results would be obtained by spotting N. gonorrhoeae probe at a position near the side of the fluorescently labeled reverse primer within its target gene and spotting each probe at a concentration of 50 microM onto the aldehyde-derived glass slides using spotting solution S1 and using hybridization solution H2 for hybridization. The probes designed by our laboratory could specifically discriminate the pathogens of N. gonorrhoeae, C. trachomatis and U. urealyticum in the presence of the internal control on the microarray simultaneously and separately. By incorporating the key features of DNA microarray with those of multiplex PCR, the microarray provides a fast high throughput platform for multiple infections and multiple samples to be detected and identified simultaneously for STD clinics. It also provides a new platform for other diseases and gene mutations to be detected and identified at a high throughput.  相似文献   

5.
DNA microarrays used as 'genomic sensors' have great potential in clinical diagnostics. Biases inherent in random PCR-amplification, cross-hybridization effects, and inadequate microarray analysis, however, limit detection sensitivity and specificity. Here, we have studied the relationships between viral amplification efficiency, hybridization signal, and target-probe annealing specificity using a customized microarray platform. Novel features of this platform include the development of a robust algorithm that accurately predicts PCR bias during DNA amplification and can be used to improve PCR primer design, as well as a powerful statistical concept for inferring pathogen identity from probe recognition signatures. Compared to real-time PCR, the microarray platform identified pathogens with 94% accuracy (76% sensitivity and 100% specificity) in a panel of 36 patient specimens. Our findings show that microarrays can be used for the robust and accurate diagnosis of pathogens, and further substantiate the use of microarray technology in clinical diagnostics.  相似文献   

6.
The comparative evaluation of the PCR test "Polimik" (Research and Production Firm "Litekh", Moscow) and the PCR test of the Novosibirsk Institute of Bioorganic Chemistry (NIBC) was carried out. The results obtained with the use of the PCR test "Polimik" and the PCR test of the NIBC of the detection of C. trachomatis and M. hominis coincided in 97.8% and 97.4% of cases. For U. urealyticum, the coincidence of the results of both PCR tests was 81.2%. Among women who visited gynecologists for reproductive function disturbances, the use of the PCR tests made it possible to detect C. trachomatis in 19 (5.5%) out of 343 cases, U. urealyticum in 96 (39.0%) out of 246 cases and M. hominis in 25 (16.9%) out of 148 cases. The results of the investigation revealed that the occurrence of C. trachomatis infection in Novosibirsk was comparable with that in other regions of the world among the low-risk groups of the population. The detection frequency of M. hominis and U. urealyticum with the use of the PCR tests showed that the occurrence of infections caused by these causative agents coincided with the data obtained in other countries.  相似文献   

7.
目的建立并优化环介导等温扩增(LAMP)技术对解脲脲原体(U.urealyticum)的检测,并应用于临床样本分析。方法针对U.urealyticum的urease基因设计LAMP引物;研究LAMP的最适温度、最佳检测时间及灵敏度和特异度;与传统PCR检测进行方法学比对。结果 LAMP技术检测U.urealyticum的最适温度和最佳时间分别是61℃和60 min,并且具有良好灵敏度和特异度,较普通PCR检测的灵敏度高出1 000倍。临床样本检测中,PCR和LAMP技术达到的灵敏度分别为25.00%和87.50%。两种方法的特异度均为100.00%。结论 LAMP与PCR相比在基层检测和大规模筛查方面有显著的优势和巨大的利用价值。  相似文献   

8.
To establish a rapid, sensitive and specific diagnostic assay for Hantavirus with microarray techniques, specific primers and probes were designed according to the conservative and specific DNA sequence of 76-118 strain and R22 strain. The probes were spotted on glass slides to form microarrays.The Cy3-1abled single stranded DNA fragments prepared by dissymmetical PCR were hybridized with the probes on the glass slides. The microarrays were scanned and analyzed with a scanner. The results showed that the DNA microarray could detect the different typed DNA of HTN and SEO with adequate specificity and sensitivity. The developed DNA microarray and techniques might be a very useful method for diagnosis and prevention, and could be widely applied in specific pathogens detection ofinfectious diseases such as hemorrhagic fever with renal syndrome.  相似文献   

9.
Chromosome conformation capture (3C) is a powerful technique for analyzing spatial chromatin organization in vivo. Technical variants of the assay ('4C') allow the systematic detection of genome-wide coassociations with bait sequences of interest, enabling the nuclear environments of specific genes to be probed. We describe enhanced 4C (e4C, enhanced chromosome conformation capture on chip), a technique incorporating additional enrichment steps for bait-specific sequences, and thus improving sensitivity in the detection of weaker, distal chromatin coassociations. In brief, e4C entails the fixation, restriction digestion and ligation steps of conventional 3C, with an optional chromatin immunoprecipitation (ChIP) step to select for subsets of chromatin coassociations, followed by bait enrichment by biotinylated primer extension and pull-down, adapter ligation and PCR amplification. Chromatin coassociations with the bait sequence can then be assessed by hybridizing e4C products to microarrays or sequencing. The e4C procedure takes approximately 1 week to go from tissue to DNA ready for microarray hybridization.  相似文献   

10.
We developed a DNA microarray suitable for simultaneous detection and discrimination between multiple bacterial species based on 16S ribosomal DNA (rDNA) polymorphisms using glass slides. Microarray probes (22- to 31-mer oligonucleotides) were spotted onto Teflon-masked, epoxy-silane-derivatized glass slides using a robotic arrayer. PCR products (ca. 199 bp) were generated using biotinylated, universal primer sequences, and these products were hybridized overnight (55 degrees C) to the microarray. Targets that annealed to microarray probes were detected using a combination of Tyramide Signal Amplification and Alexa Fluor 546. This methodology permitted 100% specificity for detection of 18 microbes, 15 of which were fish pathogens. With universal 16S rDNA PCR (limited to 28 cycles), detection sensitivity for purified control DNA was equivalent to <150 genomes (675 fg), and this sensitivity was not adversely impacted either by the presence of competing bacterial DNA (1.1 x 10(6) genomes; 5 ng) or by the addition of up to 500 ng of fish DNA. Consequently, coupling 16S rDNA PCR with a microarray detector appears suitable for diagnostic detection and surveillance for commercially important fish pathogens.  相似文献   

11.
A novel application of mid-infrared chemical imaging (IRCI) for the fluorophore-free detection and identification of mycoplasma species is reported for the first time. The PCR-amplified biotinylated targets hybridized to microarray probes were treated with streptavidin-gold nanoparticles followed by silver enhancement. This modification has the potential to expand the implementation of DNA microarray techniques in laboratories involved in the detection of cell substrates, other biological products, and clinical materials for the presence of mycoplasmas.  相似文献   

12.
Wang D  Gao H  Zhang R  Ma X  Zhou Y  Cheng J 《BioTechniques》2003,35(2):300-2, 304, 306 passim
Efficiencies of mismatch discrimination using size-varied capture probes were examined at various hybridization temperatures. The probes were 17, 15, 13, 11, 9, and 7 nucleotides long and contained single-base mismatches at their 3' ends. The optimal signal intensity and efficiency of base stacking hybridization on mismatch discrimination were observed for capture probes with a melting temperature (Tm) value of 36 degrees C, in the detection of DNA sequence variations at 40 degrees C. We employed asymmetric PCR to prepare single-stranded target DNA labeled with a fluorescent dye, and the PCR product was hybridized on the DNA microarray with no further purification. Our efforts have enhanced the sensitivity and simplified the procedures of base stacking hybridization on mismatch discrimination. As a model experiment, this improved technology was used to identify plasmid templates of human leukocyte antigen (HLA)-A alleles 2601, 2902, and 0206 on oligonucleotide microarrays. It is now possible to apply this simple, rapid, sensitive, and reliable base stacking hybridization technology to detect DNA sequence variations on microarrays in clinical diagnosis and other applications.  相似文献   

13.
A small-oligonucleotide microarray prototype was designed with probes specific for the universal 16S rRNA and cpn60 genes of several pathogens that are usually encountered in wastewaters. In addition to these two targets, wecE-specific oligonucleotide probes were included in the microarray to enhance its discriminating power within the Enterobacteriaceae family. Universal PCR primers were used to amplify variable regions of 16S rRNA, cpn60, and wecE genes directly in Escherichia coli and Salmonella enterica serovar Typhimurium genomic DNA mixtures (binary); E. coli, S. enterica serovar Typhimurium, and Yersinia enterocolitica genomic DNA mixtures (ternary); or wastewater total DNA. Amplified products were fluorescently labeled and hybridized on the prototype chip. The detection sensitivity for S. enterica serovar Typhimurium was estimated to be on the order of 0.1% (104 S. enterica genomes) of the total DNA for the combination of PCR followed by microarray hybridization. The sensitivity of the prototype could be increased by hybridizing amplicons generated by PCR targeting genes specific for a bacterial subgroup, such as wecE genes, instead of universal taxonomic amplicons. However, there was evidence of PCR bias affecting the detection limits of a given pathogen as increasing amounts of a different pathogen were spiked into the test samples. These results demonstrate the feasibility of using DNA microarrays in the detection of waterborne pathogens within mixed populations but also raise the problem of PCR bias in such experiments.  相似文献   

14.
The polymerase chain reaction (PCR) technique and commercial Mycoplasma IST 2 test were compared with culture for the detection of U. urealyticum and M. hominis in 173 clinical samples obtained from patients without clinical symptoms from genito-urinary tract. The presence of U. urealyticum was diagnosed by culture in 24 samples, by PCR in 33 samples and by Mycoplasma IST 2 test in 39 samples. The presence of M. hominis was diagnosed in 26 samples only by Mycoplasma IST 2 test--culture and PCR were negative. The study showed the excellent sensitivity (100%) and good specificity (appropriately 94.0% and 90.0%) for U. urealyticum in PCR and Mycoplasma IST 2 test. The discrepancy of results obtained in Mycoplasma IST 2 test and culture as well as in PCR may suggest the over sensitivity of the commercial test for detection of M. hominis.  相似文献   

15.
To date real-time quantitative PCR and gene expression microarrays are the methods of choice for quantification of nucleic acids. Herein, we described a unique fluorescence resonance energy transfer-based microarray platform for real-time quantification of nucleic acid targets that combines advantages of both and reduces their limitations. A set of 3′ amino-modified TaqMan probes were designed and immobilized on a glass slide composing a regular microarray pattern, and used as probes in the consecutive PCR carried out on the surface. During the extension step of the PCR, 5′ nuclease activity of DNA polymerase will cleave quencher dyes of the immobilized probe in the presence of nucleic acids targets. The increase of fluorescence intensities generated by the change in physical distance between reporter fluorophore and quencher moiety of the probes were collected by a confocal scanner. Using this new approach we successfully monitored five different pathogenic genomic DNAs and analyzed the dynamic characteristics of fluorescence intensity changes on the TaqMan probe array. The results indicate that the TaqMan probe array on a planar glass slide monitors DNA targets with excellent specificity as well as high sensitivity. This set-up offers the great advantage of real-time quantitative detection of DNA targets in a parallel array format.  相似文献   

16.
We developed a DNA microarray suitable for simultaneous detection and discrimination between multiple bacterial species based on 16S ribosomal DNA (rDNA) polymorphisms using glass slides. Microarray probes (22- to 31-mer oligonucleotides) were spotted onto Teflon-masked, epoxy-silane-derivatized glass slides using a robotic arrayer. PCR products (ca. 199 bp) were generated using biotinylated, universal primer sequences, and these products were hybridized overnight (55°C) to the microarray. Targets that annealed to microarray probes were detected using a combination of Tyramide Signal Amplification and Alexa Fluor 546. This methodology permitted 100% specificity for detection of 18 microbes, 15 of which were fish pathogens. With universal 16S rDNA PCR (limited to 28 cycles), detection sensitivity for purified control DNA was equivalent to <150 genomes (675 fg), and this sensitivity was not adversely impacted either by the presence of competing bacterial DNA (1.1 × 106 genomes; 5 ng) or by the addition of up to 500 ng of fish DNA. Consequently, coupling 16S rDNA PCR with a microarray detector appears suitable for diagnostic detection and surveillance for commercially important fish pathogens.  相似文献   

17.
As a first step toward building a comprehensive microarray, two low density DNA microarrays were constructed and evaluated for the accurate detection of wastewater pathogens. The first one involved the direct hybridization of wastewater microbial genomic DNA to the functional gene probes while the second involved PCR amplification of 23S ribosomal DNA. The genomic DNA microarray employed 10 functional genes as detection targets. Sensitivity of the microarray was determined to be approximately 1.0 microg of Esherichia coli genomic DNA, or 2 x 10(8) copies of the target gene, and only E. coli DNA was detected with the microarray assay using municipal raw sewage. Sensitivity of the microarray was enhanced approximately by 6 orders of magnitude when the target 23S rRNA gene sequences were PCR amplified with a novel universal primer set and allowed hybridization to 24 species-specific oligonucleotide probes. The minimum detection limit was estimated to be about 100 fg of E. coli genomic DNA or 1.4 x 10(2) copies of the 23S rRNA gene. The PCR amplified DNA microarray successfully detected multiple bacterial pathogens in wastewater. As a parallel study to verify efficiency of the DNA microarray, a real-time quantitative PCR assay was also developed based on the fluorescent TaqMan probes (Applied Biosystems).  相似文献   

18.
We present a new protocol for the preparation of nucleic acids for microarray hybridization. DNA is fragmented quantitatively and reproducibly by using a hydroxyl radical-based reaction, which is initiated by hydrogen peroxide, iron(II)-EDTA and ascorbic acid. Following fragmentation, the nucleic acid fragments are densely biotinylated using a biotinylated psoralen analog plus UVA light and hybridized on microarrays. This non-enzymatic protocol circumvents several practical difficulties associated with DNA preparation for microarrays: the lack of reproducible fragmentation patterns associated with enzymatic methods; the large amount of labeled nucleic acids required by some array designs, which is often combined with a limited amount of starting material; and the high cost associated with currently used biotinylation methods. The method is applicable to any form of nucleic acid, but is particularly useful when applying double-stranded DNA on oligonucleotide arrays. Validation of this protocol is demonstrated by hybridizing PCR products with oligonucleotide-coated microspheres and PCR amplified cDNA with Affymetrix Cancer GeneChip microarrays.  相似文献   

19.
百合病毒的DNA芯片检测技术研究   总被引:1,自引:0,他引:1  
根据已知的黄瓜花叶病毒,百合无症病毒、百合斑驳病毒基因核苷酸序列,设计引物和探针,制备寡核苷酸芯片。用Cy3标记核苷酸引物,不对称RT-PCR扩增产物与芯片上的寡核苷酸探针杂交,荧光扫描仪检测并分析信号。研究制备的基因芯片能够检测侵染百合的3种重要病毒核酸的特异性荧光信号,该项技术具有特异、灵敏、快速的优点。  相似文献   

20.
反相斑点杂交法对解脲脲原体分型的研究   总被引:1,自引:0,他引:1  
目的研究以聚合酶链反应为基础的快速检测与鉴定解脲脲原体基因型的方法。方法选择2003年11月至2005年11月在中山大学附属第二医院门诊就诊的有外阴阴道炎症状和体征的患者601例,设为病例组,同期无自觉症状的正常体检人群306例,设为对照组,分别取宫颈分泌物待检测。将解脲脲原体不同基因型的特异探针固定在硝酸纤维素膜上,临床标本按常规方法提取解脲脲原体DNA,采用生物素标记的解脲脲原体特异通用引物PCR扩增DNA,然后分别与解脲脲原体不同基因型特异探针杂交、显色。结果病例组解脲脲原体阳性421例占70.0%,对照组解脲脲原体阳性126例占41.2%。病例组中单型别感染的U.parvum占65.4%,其中1型、3型、6型和14型分别占28.8%、43.3%、26.0%和1.9%,U.urealyticum占18.4%;对照组中单型别感染的U.parvum占79.3%,其中1型、3型、6型和14型分别占63.2%、21.1%、15.7%和0.0%,U.urealyticum占13.8%。18例阳性标本随机DNA测序鉴定,均为相应的解脲脲原体基因型。结论U.parvum群,尤其是其中的1、3、6型别是正常人群携带的可能性较大,U.urealyticum则有可能和1型起协同作用或独自导致疾病。用反相斑点杂交进行解脲脲原体基因分型,方法简单、实用,适用于临床。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号