首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of bombesin (BBS) and gastrin releasing peptide (GRP) on gastric emptying was studied in conscious cats. This effect was measured simultaneously with antral motility. Acid and pepsin secretions as well as blood hormonal peptide release were additionally measured. A dual effect was observed. First, BBS and GRP slowed gastric emptying of liquids, while antral motility was decreased, then after 60 minutes of continuous intravenous infusion, antral motility returned to basal values and gastric emptying effect reversed. The mechanism of this peculiar action is independent of gastrin, pancreatic polypeptide, somatostatin and motilin release and most probably connected with a cholinergic stimulation induced by the peptides, the late predominance of which counterbalances the inhibitory effect of bombesin-like peptides on antral motility.  相似文献   

2.
To explore the mechanisms of gastrin-releasing peptide (GRP)-induced gut functions in man, we investigated the effect on gallbladder contraction, exocrine pancreatic secretion and gastric acid secretion of a recently developed CCK receptor antagonist, loxiglumide, on GRP-stimulated effects in six healthy human subjects. Intravenous infusion of graded doses of synthetic human GRP (1-27 pmol/kg per h) caused significant and dose-dependent increases in pancreatic enzyme and gastric acid secretions and in gallbladder contraction. Intravenous administration of loxiglumide (10 mg/kg per h) abolished GRP-stimulated gallbladder contraction, augmented gastric acid secretion, but did not affect exocrine pancreatic secretion. The results suggest that endogenously released CCK is (1) responsible for GRP-stimulated gallbladder contraction, and (2) involved in regulating gastric acid secretion. The results further suggest that GRP-stimulated pancreatic secretion is not mediated by CCK, but has a direct response of GRP on the exocrine pancreas.  相似文献   

3.
The potent inhibitory effect of galanin on basal and pentagastrin-stimulated gastric acid secretion in vivo, and the presence of galanin-containing nerves in gastrointestinal tract and pancreas, suggested that this peptide may regulate the exocrine secretion of the GI system. Male rats were anesthetized with pentobarbital and the dose-dependent inhibitory effects of galanin on basal and stimulated pancreatic protein and amylase secretions were investigated in separate experiments. Galanin was administered intravenously in the following doses: 3, 6, 10, 15 and 20 micrograms/kg/h (0.93, 1.86, 3.1, 4.65 and 6.2 nmol/kg/h), and pancreatic secretions measured. The maximal effective dose of galanin (3.1 nmol/kg/h) on basal pancreatic secretions was found, and was used for evaluating the inhibitory effect of galanin on pancreatic protein and amylase secretions stimulated by bombesin, secretin and cholecystokinin. Galanin potently inhibited basal, bombesin-, secretin- and cholecystokinin-stimulated pancreatic protein and amylase secretion. Inhibitory effect of galanin was dose-dependent and biphasic.  相似文献   

4.
《Peptides》1987,8(3):423-430
The effect of porcine gastrin releasing peptide (GRP) was compared to those of bombesin (BBS) and pentagastrin (PG) in conscious cats. GRP and BBS augmented acid and pepsin secretions, as well as antral motility with an early effect comparable to that produced by pentagastrin with an elevation of low amplitude contractions and a diminution of high amplitude contractions. BBS and GRP increased plasma gastrin and pancreatic polypeptide (PP) levels and decreased motilin levels measured by a C terminus-directed antiserum. In all cases, BBS and GRP displayed parallel dose-response curves. PG showed slight differences in the slopes of the dose-response curves except for acid secretion stimulation where no difference was noted (PG was the most effective) and for pepsin stimulation where the difference was large (PG was much less effective). According to the different targets studied, BBS was 4 to 9 times more potent than GRP, 6 to 200 times more than PG. Gastrin release, elicited by the lowest ED50 of both BBS and GRP, should be considered as their primary effect in the cat.  相似文献   

5.
Human gastrin-releasing peptide: biological potency in humans.   总被引:3,自引:0,他引:3  
Gastrin-releasing peptide (GRP) was infused in graded doses (1-27 pmol/kg per h) to healthy human volunteers to study the effects on gastric, pancreatic and gallbladder functions as well as on gastrin, CCK and PP release. The results were compared to equimolar doses of synthetic bombesin. GRP significantly (P less than 0.05) stimulated gastric and pancreatic secretory responses, gallbladder contraction and gastro-enteropancreatic hormone release in a dose-dependent manner. GRP was found to be equipotent to bombesin with respect to gastric acid secretion, pancreatic enzyme output, gallbladder contraction and plasma hormone release. We conclude (a) that human GRP has similar biologic effects as synthetic bombesin; (b) as GRP is localized exclusively in nerve tissue and has potent effects on different organs, it is a likely candidate for peptidergic control of human gastric, pancreatic and gallbladder functions.  相似文献   

6.
The effects of intracerebroventricular (i.c.v.) injection of synthetic thyrotropin-releasing hormone (TRH) and its analogue (gamma-butyrolactone-gamma-carbonyl-His-Pro-NH2) were tested in anesthetized rats fitted with pancreatic cannula. TRH injection induced dose-related increases in flow of pancreatic juice, protein output, and amylase output, each reaching a maximum within 10 min. Higher doses of TRH induced longer responses. Injection of the TRH analogue also caused dose-related secretory responses of the exocrine pancreas. The dose-related secretory responses to TRH and the TRH analogue were similar except that the responses to the highest dose of TRH analogue (1600 pmol/100 g b.w.) were significantly higher. Intravenous injection of TRH and the TRH analogue induced little, if any, secretory response of the exocrine pancreas. The effects of i.c.v. injection of TRH and the TRH analogue were completely abolished after bilateral subdiaphragmatic vagotomy. In addition to the secretory effects on the exocrine pancreas, i.c.v. injection of TRH and the analogue caused hyperglycemia, tachycardia, and tear secretion, but the intravenous injection of these peptides had no effect.  相似文献   

7.
The inhibitory effect of glucagon on exocrine pancreas has been the subject of controversial reports. On the other hand, oxyntomodulin (bioactive enteroglucagon or glucagon-37), a 37 amino acid peptide isolated from porcine lower intestine, has been shown to be 10–20 times more potent than glucagon in inhibiting gastric acid secretion in the rat. In view of this, the effect of glucagon and oxyntomodulin on basal and caerulein-stimulated pancreatic secretion has been studied, during re-introduction of pancreatic juice into duodenum, in the conscious rat provided with pancreatic and duodenal fistulas. A depression of pancreatic function was observed with both peptides on the three parameters studied: (volume of juice secreted, bicarbonate and protein output), either under basal conditions or during stimulation by caerulein. In all the experimental conditions used, oxyntomodulin was ca. ten times more potent than glucagon in its inhibitory effect. The fact that oxyntomodulin, as what is observed in the stomach, is one order of magnitude more potent than glucagon in inhibiting pancreatic secretion suggests that the biological mechanisms by which the peptides of the glucagon-family act on exocrine pancreas are similar, or related to that present at the gastric level.  相似文献   

8.
This study was conducted to determine if synthetic porcine gastrin-releasing peptide (GRP) stimulates the release of immunoreactive cholecystokinin (CCK), pancreatic polypeptide (PP) and gastrin in dogs. Three doses (0.01, 0.1 and 0.5 μg/kg-hr) of synthetic porcine GRP were administered intravenously to six conscious dogs. Synthetic procine GRP stimulated the release of each hormone in a dose-related manner. The effect of GRP on the response of gastrin was greater than its effect on CCK and PP responses. This study indicates that the biological action of synthetic porcine GRP is similar to the bombesin, an amphibian peptide shown previously to stimulate the release of gastrointestinal peptides.  相似文献   

9.
Dose-response studies were performed in 6 human volunteer subjects to determine the threshold and optimal doses of intravenous bombesin for stimulation of gastric acid secretion and gastrin release. A significant stimulation of both acid and gastrin was obtained with a very low dose, 3 pmol · kg?1 · h?1. Peak stimulation of acid secretion (67% of pentagastrin PAO) was obtained at 12.5 pmol · kg?1 · h?1. Serum gastrin response to this dose of bombesinn was similar to that obtained after a high protein meal. Higher doses of bombesin caused further increases in serum gastrin but not in acid secretion. Since very low doses of bombesin, too small to produce detectable increases in immunoreactive serum bombesim, caused parallel increases in gastrin and acid secretion, it is possible that the bombesin-like peptides present in human gastrointestinal tissues contribute to regulation of human gastric secretion.  相似文献   

10.
Bombesin is a potent stimulus of both pancreatic protein secretion and plasma pancreatic polypeptide (PP) release in dogs. Physiological plasma levels of PP have been shown to inhibit pancreatic exocrine secretion in dogs. We examined the question whether the concomitant release of PP exerts a suppressive action on the pancreatic exocrine response to bombesin in dogs by measuring pancreatic exocrine secretion with and without in vivo immunoneutralization of PP with a high affinity PP-antiserum. Bombesin was infused in a dose of 150 ng/kg·hr, resulting in a rise of plasma PP from 24±5 to 224±25 pM (p<0.01). Before this bombesin infusion, 7 ml of normal rabbit serum had been administered to the dogs (n=8). At a later stage, the study was repeated after administration of 7 ml of PP-antiserum to the same animals. The bombesin induced increase in pancreatic exocrine secretion during administration of PP-antiserum (flow rate 24±10 ml/hr, protein output 1.35±0.43 g/hr, and bicarbonate output 3.25±1.42 mmol/hr) was not significantly different from that during control rabbit serum (flow rate 21±7 ml/hr, protein output 1.26±0.38 g/hr, and bicarbonate output 3.18±1.10 mmol/hr). It is therefore concluded that the pancreatic exocrine response to bombesin is not affected by the concomitant secretion of PP.  相似文献   

11.
Recent synthesis of specific, potent bombesin receptor antagonists allows examination of the role of bombesin-like peptides in physiological processes in vivo. We characterized effects of [D-Phe6]bombesin(6-13)-methyl-ester (BME) on pancreatic enzyme secretion stimulated by the C-terminal decapeptide of gastrin releasing peptide (GRP-10), food intake, and diversion of bile-pancreatic juice in rats. In isolated pancreatic acini, BME had no agonistic effects on amylase secretion but competitively inhibited responses to GRP-10, yielding a pA2 value of 8.89 +/- 0.19. In conscious rats with gastric, jugular vein, bile-pancreatic, and duodenal cannulas, basal enzyme secretion (bile-pancreatic juice recirculated) was not affected by the antagonist. Maximal amylase response to GRP-10 (0.5 nmol/kg/h) was inhibited dose dependently by BME, reaching 97% inhibition at a dose of 400 nmol/kg/h. The dose response curve of amylase secretion stimulated by GRP-10 was shifted to the right by 40 nmol/kg/h BME, but maximal amylase response was unaltered, suggesting competitive inhibition in vivo. Liquid food intake and bile-pancreatic juice diversion caused substantial increases in amylase secretion; neither response was altered during administration of 400 pmol/kg/h BME. These results demonstrate that BME is a potent, competitive antagonist of pancreatic responses to bombesin-like peptides in vitro and in vivo. Lack of effect of BME on basal pancreatic secretion or responses to liquid food intake or diversion of bile-pancreatic juice in rats suggests that endogenous bombesin-like peptides do not act either directly or indirectly to mediate these responses.  相似文献   

12.
The satiety-eliciting effect of gastrin-releasing peptide (GRP), a putative mammalian counterpart of bombesin (BBS), was examined in mildly food-deprived rats. Intraperitoneal injections of GRP resulted in a significant decrease of 30-minute food intake at 2, 4, 8 and 16 μg/kg, while 1 μg/kg had no reliable effect. Intraperitoneal GRP at 4 and 8 μg/kg did not suppress 30-minute water consumption by thirsty rats. When the dose-effect curves of GRP and BBS are compared on a molar scale, GRP is approximately 30% less potent than BBS in suppressing food intake. The two dose-effect curves are similar in shape and their regression lines have parallel slopes. These data lend further support to the hypothesis that GRP is a mammalian counterpart of BBS and strengthen the argument that they may function as endogenous satiety factors.  相似文献   

13.
Effects of synthetic rat pancreastatin C-terminal fragment on both exocrine and endocrine pancreatic functions were examined in rats, in vivo and in vitro. Pancreastatin (20, 100 pmol, 1 nmol/kg/h) significantly inhibited CCK-8-stimulated pancreatic juice flow and protein output in a dose-related manner, in vivo. The inhibitory effect on bicarbonate output was not statistically significant. Pancreastatin did not significantly inhibit basal pancreatic secretions in vivo, and did not inhibit amylase release from the dispersed acini, in vitro. Insulin release stimulated by intragastric administration of glucose (5 g/kg) was significantly inhibited by pancreastatin (1 nmol/kg/h), in vivo. Plasma glucose concentrations were increased by pancreastatin infusion, but the increase was not statistically significant. Furthermore, pancreastatin inhibited insulin release from isolated islets, in vitro. Synthetic rat C-terminal pancreastatin fragment has bioactivities on both exocrine and endocrine pancreatic functions in rats.  相似文献   

14.
The effects of 1-h infusions of bombesin and gastrin releasing peptide (GRP) at 50 pmol/kg per h and neurotensin at 100 pmol/kg per h on gastrin, pancreatic polypeptide (PP) and neurotensin release in man were determined following either saline or atropine infusion (20 micrograms/kg). Bombesin produced a rise in plasma neurotensin from 32 +/- 6 to 61 +/- 19 pmol/l and of PP from 26 +/- 8 to 36 +/- 7 pmol/l. There was a further rise of plasma PP to 50 +/- 13 pmol/l after cessation of the infusion. GRP had no significant effect on plasma neurotensin, but compared to bombesin, produced a significantly greater rise in plasma PP from 34 +/- 6 to 66 +/- 19 pmol/l during infusion. There was no post-infusional increase. At this dose, GRP was as effective as bombesin in releasing gastrin, although unlike bombesin its effect was enhanced by atropine. Neurotensin produced a rise in plasma PP from 17 +/- 4 to 38 +/- 8 pmol/l. Atropine blocked the release of PP during GRP and neurotensin infusion. Atropine had no effect on neurotensin or PP release during bombesin infusion, but did block the rise in plasma PP following bombesin infusion. We conclude that, in contrast to meal-stimulated neurotensin release, bombesin-stimulated neurotensin release is cholinergic independent. Despite structural homology, bombesin and GRP at the dose used are dissimilar in man in their actions and sensitivity to cholinergic blockade.  相似文献   

15.
The effects of bombesin (BBS) infusion or BBS injection on the plateau gastric secretion stimulated by pentagastrin (Pg) were compared in cats fitted with gastric fistula (GF) and Heidenhain pouch (HP). Injection of 81 pmol/kg of BBS inhibited Pg-stimulated acid secretion in both GF and HP by 47 +/- 5% and 37 +/- 5% (P less than 0.01), respectively. Infusion of 324 pmol/kg.h of BBS did not significantly modify acid secretion, but as soon as the infusion stopped, an inhibition appeared which lasted 1 h (37 +/- 5% in GF and 53 +/- 4% in HP P less than 0.01). The inhibition was reversed in GF by infusion of BBS 324 pmol/kg.h. In HP, reversion of inhibition required the addition in the Pg infusion of subthreshold dose of carbachol. We suggest that under non-steady state conditions (i.e. injection or after the end of the infusion) a concentration gradient of BBS is created which favors the response of D-cells over that of G-cells, whereas under steady-state conditions (i.e. during infusion) the effects of BBS on G- and D-cells are balanced. This finding argues for a physiological role of BBS in the regulation of gastric acid secretion.  相似文献   

16.
The influence of nicotine on the basal and bombesin (BBS) stimulated plasma levels of gastrin, cholecystokinin (CCK) and pancreatic polypeptide (PP) was investigated in conscious dogs. Plasma levels of nicotine and gastrointestinal (GI) hormones were measured by employing gas liquid chromatography and specific radioimmunoassay (RIA). The basal levels of gastrin, CCK and PP were found to be in pg/ml (pmol/l) (mean +/- S.E.), 28 +/- 5 (13 +/- 3), 252 +/- 32 (66 +/- 8) and 347 +/- 136 (83 +/- 32), respectively and these values remained unchanged with nicotine. Significant increases in levels of gastrin, CCK and PP were, however, found with infusions of BBS alone or with BBS in combination with nicotine. Gastrin levels were higher whereas CCK and PP levels were lower with BBS alone than with BBS plus nicotine. The peak values for CCK and PP, but not gastrin, were less during second BBS infusion. These results indicate that nicotine, in presence of bombesin, has an inhibitory effect on the release of gastrin and a stimulatory effect on the release of PP and CCK.  相似文献   

17.
The secretory response of hepatic bile and exocrine pancreas to gastrointestinal peptides has been studied in chronically cannulated sheep. Pancreatic juice flow and protein output were evoked dose dependently by intraportal injection of secretin, CCK-8, caerulein, VIP and neurotensin. However, biliary secretion was evoked by only secretin. Biliary and pancreatic exocrine secretions were enhanced by delivered gastric juice into the duodenum as followed by the increased plasma concentration of immunoreactive secretin (IRS). Results suggest that secretin is the major peptide that regulates pancreatic exocrine secretion and hepatic bile production in the sheep.  相似文献   

18.
This study was designed to compare, on a molar basis, the effect of chronic bombesin, gastrin-releasing peptide (GRP) and caerulein on pancreatic growth in the rat. These 3 peptides were administered s.c. 3 times daily for 4 days at the following concentrations: 0.036, 0.36, 3.6 and 7.2 nmol/kg of body weight. Bombesin and GRP induced pancreatic growth in a dose-dependent manner from 3.6 nmol/kg. This growth was characterized by an increase in pancreatic weight, its protein and RNA contents but not in DNA content suggesting cellular hypertrophy. Caerulein exerted a biphasic effect on pancreatic growth, inducing cellular hypertrophy at low doses since 0.36 nmol/kg and atrophy with the highest dose (7.2 nmol/kg). Bombesin and caerulein (until 3.6 nmol/kg) increased the pancreatic content in chymotrypsin more than in amylase. The 7.2 nmol/kg caerulein treatment depressed all enzyme activities while the same dose of GRP increased pancreatic lipase content. It is concluded that (1) bombesin and GRP are equipotent trophic factors for the pancreas; (2) caerulein is the most potent factor and exerts a biphasic effect on pancreatic growth; (3) pancreatic growth and synthesis and/or secretion of enzymes are not regulated through the same mechanism.  相似文献   

19.
The GRP receptor mediated growth response in Swiss 3T3 cells has been used to identify BN/GRP antagonists. Analysis of bombesin antagonism by substance P analogues and by truncated GRP analogues revealed that deletion of the C-terminal methionine residue was important for antagonism. Des-Met analogues showing potent antagonist activity in the in vitro 3T3 system (IC50 approximately 2nM) were synthesized. Further structural modification of these peptides led to the identification of (CH3)2CHCO-His-Trp-Ala-Val-D-Ala-His-Leu-NHCH3 (ICI 216140) which reduced bombesin-stimulated rat pancreatic amylase secretion to basal levels when administered subcutaneously at 2.0 mg per kg.  相似文献   

20.
The gastric exocrine inhibitory activities of somatostatin-28 (SS-28) and somatostatin-14 (SS-14) were determined in conscious cats prepared with gastric fistulae. Gastric acid and pepsin secretions were stimulated with pentagastrin. Expressed in terms of exogenous doses, SS-14 (ID50: 1.49 nmol . kg-1 . h-1) was 3.4 times more potent than SS-28 (ID50: 5.12 nmol . kg-1 . h-1) as an inhibitor of gastric acid secretion. Similarly SS-14 (ID50: 0.25 nmol . kg-1 . h-1) was 3.8 times more potent than SS-28 (ID50: 0.96 nmol . kg-1 . h-1) as an inhibitor of pepsin secretion. Expressed in terms of circulating plasma concentration measured by radioimmunoassay, SS-14 (ID50: H+, 232 and pepsin 73 pM) was 8-9 times more potent than SS-28 (ID50: H+, 2112 and pepsin, 611 pM) as an inhibitor of gastric exocrine secretions. The plasma immunoreactive half-life of SS-28 (6.1 min) was double that for SS-14 (2.4 min) possibly due to a slower theoretical metabolic clearance rate of the larger peptide (30 and 87 ml . kg-1 . min-1, respectively). Both peptides had similar apparent distribution volumes (SS-14, 306 and SS-28, 263 ml . kg-1). As judged by gel chromatography of plasma samples, there was no evidence for the conversion of SS-28 to SS-14 in vivo. The reduced activity of SS-28, compared with SS-14, against gastric exocrine secretions contrasts with its more potent effects in the pituitary and pancreas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号