共查询到20条相似文献,搜索用时 15 毫秒
1.
Rajul Iyer 《生物化学与生物物理学报:生物膜》1979,556(1):86-95
Plasmids of the N incompatibility group have been found to decrease or virtually eliminate the synthesis of the 36 500 dalton outer membrane matrix protein of their Escherichia coli B/r hosts (Iyer, R. (1977) Biochim. Biophys. Acta 470, 258–272 and Iyer, R., Darby, V. and Holland, I.B. (1978) FEBS Lett. 85, 127–132) or modify its composition. Although the 34 000 dalton tol G protein is slightly increased in some strains, it is identical in composition to the homologous protein from the plasmidless host. In three of five N+ strains, the synthesis of the modified matrix proteins depends on the temperature of cultivation of the strains in which they occur. The alterations to the matrix proteins are non-identical and do not affect the expression of several plasmid-coded functions including those of sensitivity to the N plasmid-specific filamentous bacteriophage IKe (Khatoon, H. and Iyer, R. (1971) Can. J. Microbiol. 17, 669–675), or their interbacterial transfer via conjugation to appropriate recipient strains. Thus, although the significance of the variant matrix proteins in N+ strains with respect to plasmid-mediated functions remains unclear, N plasmids nevertheless provide a convenient system which might be used to elucidate the events that precede the insertion of this protein into the outer membrane of E. coli B/r hosts. 相似文献
2.
Two carotenoids, neurosporene and spheroidene, have been successfully added to chromatophores from the carotenoidless mutant of Rhodopseudomonas sphaeroides R26. Carotenoids reconstituted in this way into the B-850 light-harvesting pigment-protein complex both sensitise bacteriochlorophyll fluorescence and protect the complex from the photodynamic reaction. 相似文献
3.
1. Stimulation of the Escherichia coli ATPase activity by urea and trypsin shows that the ATPase activity both in the membrane-bound and the solubilized form is partly masked.2. A protein, inhibiting the ATPase activity of Escherichia coli, can be isolated by sodium dodecyl sulphate polyacrylamide gel electrophoresis of purified ATPase. The inhibitor was identified with the smallest of the subunits of E. coli ATPase.3. The molecular weight of the ATPase inhibitor is about 10 000, as determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis and deduced from the amino acid composition.4. The inhibitory action is independent of pH, ionic strength or the presence of Mg2+ or ATP.5. The ATPase inhibitor is heat-stable, insensitive to urea but very sensitive to trypsin degradation.6. The Escherichia coli ATPase inhibitor does not inhibit the mitochondrial or the chloroplast ATPase. 相似文献
4.
A Bacillus subtilis gene coding for an endo-β-1,3-1,4-glucanase has been transferred to Escherichia coli by molecular cloning using bacteriophage λ and plasmid vectors. The gene is contained within a 1.6-kb EcoRI-PvuI DNA fragment and directs the synthesis in E. coli of a β-glucanase which specifically degrades barley glucan and lichenan. A novel dye-staining method has been developed to detect β-glucanase activity in colonies on agar plates. 相似文献
5.
J.E. Van Wielink L.F. Oltmann F.J. Leeuwerik J.A. De Hollander A.H. Stouthamer 《BBA》1982,681(2):177-190
An analytical technique for the in situ characterization of b- and c-type cytochromes has been developed. From evaluation of the results of potentiometric measurements and spectrum deconvolutions, it was concluded that an integrated best-fit analysis of potentiometric and spectral data gave the most reliable results. In the total cytochrome b content of cytoplasmic membranes from aerobically grown Escherichia coli, four major components are distinguished with α-band maxima at 77 K of 555.7, 556.7, 558.6 and 563.5 nm, and midpoint potentials at pH 7.0 of 46, 174, ?75 and 187 mV, respectively. In addition, two very small contributions to the α-band spectrum at 547.0 and 560.2 nm, with midpoint potentials of 71 and 169 mV, respectively, have been distinguished. On the basis of their spectral properties they should be designated as a cytochrome c and a cytochrome b, respectively. In Complex III, isolated from beef heart mitochondria, five cytochromes are distinguished: cytochrome c1 (Λm(25°C) = 553.5 nm; E′0 = 238 mV) and four cytochromes bΛm(25°C) = 558.6, 561.2, 562.1, 566.1 nm and E′0 = ?83, 26, 85, ?60 mV). 相似文献
6.
Piero Cammarano Filomena Mazzei Paola Londei Angela Teichner Mario de Rosa Agata Gambacorta 《Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression》1983,740(3):300-312
Ribosomal subunits of Caldariella acidophila (max.growth temp., 90°C) have been compared to subunits of Bacillus acidocaldarius (max. growth temp., 70°C) and Escherichia coli (max. growth temp., 47°C) with respect to (a) bihelical content of rRNA; (b) G·C content of bihelical domains and (c) tightness of rRNA-protein interactions. The principal results are as follows. 1. Subunits of C. acidophila ribosomes (Tm = 90–93°C) exhibit considerable thermal tolerance over their B. acidocaldarius (Tm = 77°C) and E. coli counterparts (Tm = 72°C). 2. Based on the ‘melting’ hyperchromicities of the intact ribosomal subunits a 51–55% fraction of the nucleotides appears to participate in hydrogen-bonded base pairing regardless of ribosome source, whereas a larger fraction, 67–70%, appears to be involved in hydrogen bonding in the naked rRNA species. 3. The G·C content of bihelical domains of both free and ribosome-bound rRNA increases with increasing thermophily; based on hyperchromicity dispersion spectra of intact subunits and free rRNA, the bihelical parts of C. acidophila rRNA are estimated to contain 63–64% G·C, compared to 58.5% G·C for B. acidocaldarius and 55% G·C for E. coli. 4. The increment in ribosome Tm values with increasing thermophily is greater than the increase in Tm for the free rRNA, indicating that within ribosomes bihelical domains of the thermophile rRNA species are stabilized more efficiently than their mesophile counterparts by proteins or/ and other component(s). 5. The efficiency of the rRNA-protein interactions in the mesophile and thermophile ribosomes has been probed by comparing the releases, with LiCl-urea, of the rRNA species from the corresponding ribosomal subunits stuck to a Celite column through their protein moiety; it has been established that the release of C. acidophila rRNA from the Celite-bound ribosomes occurs at salt-urea concentrations about 4-fold higher than those required to release rRNA from Celite-bound E. coli ribosomes. 6. Compared to E. coli, the C. acidophila 50 and 30 S ribosomal subunits are considerably less susceptible to treatment designed to promote ribosome unfolding through depletion of magnesium ions. 相似文献
7.
Interpretation of the 1H-NMR spectra of Escherichia coli dihydrofolate reductase is complicated by the large number of overlapping resonances due to protonated aromatic amino acids. Deuteration of the aromatic protons of aromatic amino acid residues is one technique useful for simplifying the 1H-NMR spectra. Previous attempts to label the dihydrofolate reductase from over-producing strains of Escherichia coli were not completely successful. This labeling problem was solved by transducing via P1 phage a genetic block into the de novo biosynthetic pathway of aromatic amino acids in a trimethoprim resistant strain of E. coli, MB 3746. A new strain, MB 4065, is a very high level producer of dihydrofolate reductase and requires exogenous aromatic amino acids for growth, therefore allowing efficient labeling of its dihydrofolate reductase with exogenous deuterated aromatic amino acid. 相似文献
8.
Galactose transport activity from Escherichia coli was solubilized with octyl glucoside, and reconstituted into liposomes made from soybean or E. coli lipid. Galactose counterflow in the proteoliposomes was inhibited by glucose, talose, 2-deoxygalactose and 6-deoxygalactose, confirming that it was due to GalP and not one of the other E. coli galactose transport systems. 相似文献
9.
K. Purohit Robert R. Becker Harold J. Evans 《Biochimica et Biophysica Acta (BBA)/General Subjects》1982,715(2):230-239
Ribulose-1,5-bisphosphate carboxylase/oxygenase has been purified from chemolithotrophically grown Rhizobium japonicum SR and ribulose-5-phosphate kinase activity has also been detected in extracts of such cells. Electrophoretically homogeneous ribulosebisphosphate carboxylase/oxygenase purified in the presence of PMSF showed two types of large subunits of 55 000 and 53 000 daltons and small subunits of 14 200 daltons. The heterogeneity of large subunits was not observed when the enzyme was prepared in the presence of PMSF and DIFP. Ribulose-1,5-bisphosphate carboxylase from R. japonicum was inhibited by antibodies to this enzyme and a single precipitin band from the antibody-enzyme interaction was observed on double diffusion plates. Antibodies to R. japonicum enzyme did not cross-react on immunodiffusion plates with the ribulosebisphosphate carboxylase/oxygenases from wheat, spinach, soybean and tobacco. 相似文献
10.
Günter A. Peschek 《BBA》1979,548(2):203-215
1. The oxyhydrogen reaction of Anacystis nidulans was studied manometrically and polarographically in whole cells and in cell-free preparations; the activity was found to be associated with the particulate fraction.2. Besides O2, the isolated membranes reduced artificial electron acceptors of positive redox potential; the reactions were unaffected by O2 levels <10–15%; aerobically the artificial acceptors were reduced simultaneously with O2.3. H2-supported O2 uptake was inhibited by CO, KCN and 2-n-heptyl-8-hydroxyquinoline-N-oxide. Inhibition by CO was partly reversed by strong light. Uncouplers stimulated the oxyhydrogen reaction.4. The kinetic properties of O2 uptake by isolated membranes were the same in presence of H2 and of other respiratory substrates.5. Low rates of H2 evolution by the membrane preparations were found in presence of dithionite; methyl viologen stimulated the reaction.6. The results indicate that under certain growth conditions Anacystis synthesizes a membrane-bound hydrogenase which appears to be involved in phosphorylative electron flow from H2 to O2 through the respiratory chain. 相似文献
11.
(H+ + K+)-ATPase-enriched membranes were prepared from hog gastric mucosa by sucrose gradient centrifugation. These membranes contained Mg2+-ATPase and p-nitrophenylphosphatase activities (68 ± 9 μmol Pi and 2.9 ± 0.6 μmol p-nitrophenol/mg protein per h) which were insensitive to ouabain and markedly stimulated by 20 mM KCl (respectively, 2.2- and 14.8-fold). Furthermore, the membranes autophosphorylated in the absence of K+ (up to 0.69 ± 0.09 nmol Pi incorporated/mg protein) and dephosphorylated by 85% in the presence of this ion. Membrane proteins were extracted by 1–2% (w/v) n-octylglucoside into a soluble form, i.e., which did not sediment in a 100 000 × g × 1 h centrifugation. This soluble form precipitated upon further dilution in detergent-free buffer. Extracted ATPase represented 32% (soluble form) and 68% (precipitated) of native enzyme and it displayed the same characteristic properties in terms of K+-stimulated ATPase and p-nitrophenylphosphatase activities and K+-sensitive phosphorylation: Mg2+-ATPase (μmol Pi/mg protein per h) 32 ± 9 (basal) and 86 ± 20 (K+-stimulated); Mg2+-p-nitrophenylphosphatase (μmol p-nitrophenol/mg protein per h) 2.6 ± 0.5 (basal) and 22.2 ± 3.2 (K+-stimulated); Mg2+-phosphorylation (nmol Pi/mg protein) 0.214 ± 0.041 (basal) and 0.057 ± 0.004 (in the presence of K+). In glycerol gradient centrifugation, extracted enzyme equilibrated as a single peak corresponding to an apparent 390 000 molecular weight. These findings provide the first evidence for the solubilization of (H+ + K+)-ATPase in a still active structure. 相似文献
12.
Günter A. Peschek 《BBA》1979,548(2):187-202
1. Anaerobic hydrogenase activity in whole cells and cell-free preparations of H2-induced Anacystis was studied both manometrically and spectrophotometrically in presence of physiological and artificial electron acceptors.2. Up to 90% of the activity measured in crude extracts were recovered in the chlorophyll-containing membrane fraction after centrifugation (144 000 × g, 3 h).3. Reduction of methyl viologen, diquat, ferredoxin, nitrite and NADP by the membranes was light dependent while oxidants of more positive redox potential were reduced also in the dark.4. Evolution of H2 by the membranes was obtained with dithionite and with reduced methyl viologen; the reaction was stimulated by detergents.5. Both uptake and evolution of H2 were sensitive to O2, CO, and thiol-blocking agents. The H2-dependent reductions were inhibited also by the plastoquinone antagonist dibromothymoquinone, while the ferredoxin inhibitor disalicylidenepropanediamine affected the photoreduction of nitrite and NADP only. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea did not inhibit any one of the H2-dependent reactions.6. The results present evidence for a membrane-bound ‘photoreduction’ hydrogenase in H2-induced Anacystis. The enzyme apparently initiates a light-driven electron flow from H2 to various low-potential acceptors including endogenous ferredoxin. 相似文献
13.
Previous work has shown that the essential R210 of subunit a in the Escherichia coli ATP synthase can be switched with a conserved glutamine Q252 with retention of a moderate level of function, that a third mutation P204T enhances this function, and that the arginine Q252R can be replaced by lysine without total loss of activity. In this study, the roles of P204T and R210Q were examined. It was concluded that the threonine in P204T is not directly involved in function since its replacement by alanine did not significantly affect growth properties. Similarly, it was concluded that the glutamine in R210Q is not directly involved with function since replacement by glycine results in significantly enhanced function. Not only did the rate of ATP-driven proton translocation increase, but also the sensitivity of ATP hydrolysis to inhibition by N,N′-dicyclohexylcarbodiimide (DCCD) rose to more than 50%. Finally, mutations at position E219, a residue near the proton pathway, were used to test whether the Arginine-switched mutant uses the normal proton pathway. In a wild type background, the E219K mutant was confirmed to have greater function than the E219Q mutant, as has been shown previously. This same unusual result was observed in the triple mutant background, P204T/R210Q/Q252R, suggesting that the Arginine-switched mutants are using the normal proton pathway from the periplasm. 相似文献
14.
15.
16.
Shih-Chia Tso 《BBA》2006,1757(12):1561-1567
A region of subunit IV comprising residues 77-85 is identified as essential for interaction with the core complex to restore the bc1 activity (reconstitutive activity). Recombinant subunit IV mutants with single or multiple alanine substitution at this region were generated and characterized to identify the essential amino acid residues. Residues 81-84, with sequence of YRYR, are required for reconstitutive activity of subunit IV, because a mutant with these four residues substituted with alanine has little activity, while a mutant with alanine substitution at residues 77-80 and 85 have the same reconstitutive activity as that of the wild-type IV. The positively charged group at R-82 and R-84 and both the hydroxyl group and aromatic group at Y-81 and Y-83 are essential. The interactions between these four residues of subunit IV and residues of core subunits are also responsible for the stability of the complex. However, these interactions are not essential for the incorporation of subunit IV into the bc1 complex. 相似文献
17.
A Photosystem II reaction centre protein complex was extracted from spinach chloroplasts using digitonin. This complex showed (i) high rates of dichloroindophenol and ferricyanide reduction in the presence of suitable donors, (ii) low-temperature fluorescence at 685 nm with a variable shoulder at 695 nm which increased as the complex aggregated due to depletion of digitonin and (iii) four major polypeptides of 47, 39, 31 and 6 kDa on dissociating polyacrylamide gels. The Photosystem II protein complex, together woth the P-700-chlorophylla protein complex and light-harvesting chlorophyll complex (LHCP) also isolated using digitonin, were reconstituted with lipids from spinach chloroplasts to form proteoliposomes. The low-temperature (77 K) fluorescence properties of the various proteoliposomes were analysed. The ratios of the Photosystem II reaction centre protein complex-liposomes decreased as the lipid to protein ratios were increased. The ratios of LHCP-liposomes were found to behave similarly. Light excitation of chlorophyll b at 475 nm stimulated emission from both the Photosystem II protein complex (F685 and F695) and the P-700-chlorophyll a-protein complex (F735) when LHCP was reconstituted with either of these complexes, demonstrating energy transfer between LHCP and PS I or II complexes in liposomes. No evidence was found for energy transfer from the PS II complex to the P-700-chlorophyll a-protein complex reconstituted in the same proteoliposome preparation. Proteoliposome preparations containing all three chlorophyll-protein complexes showed fluorescence emission at 685, 700 and 735 nm. 相似文献
18.
19.
Recent studies have indicated that post-translational flavinylation of succinate dehydrogenase subunit A (SdhA) in eukaryotes and bacteria require the chaperone-like proteins Sdh5 and SdhE, respectively. How does covalent flavinylation occur in prokaryotes, which lack SdhE homologs? In this study, I showed that covalent flavinylation in two hyperthermophilic bacteria/archaea lacking SdhE, Thermus thermophilus and Sulfolobus tokodaii, requires heat and dicarboxylic acid. These thermophilic bacteria/archaea inhabit hot environments and are said to be genetically far removed from mesophilic bacteria which possess SdhE. Since mesophilic bacteria have been effective at covalent bonding in temperate environments, they may have caused the evolution of SdhE. 相似文献
20.
Wim J.B. Wannet Huub J.M. Op den Camp Hendrik W. Wisselink Chris van der Drift Leo J.L.D. Van Griensven Godfried D. Vogels 《Biochimica et Biophysica Acta (BBA)/General Subjects》1998,1425(1):177-188
Trehalose phosphorylase (EC 2.4.1.64) from Agaricus bisporus was purified for the first time from a fungus. This enzyme appears to play a key role in trehalose metabolism in A. bisporus since no trehalase or trehalose synthase activities could be detected in this fungus. Trehalose phosphorylase catalyzes the reversible reaction of degradation (phosphorolysis) and synthesis of trehalose. The native enzyme has a molecular weight of 240 kDa and consists of four identical 61-kDa subunits. The isoelectric point of the enzyme was pH 4.8. The optimum temperature for both enzyme reactions was 30°C. The optimum pH ranges for trehalose degradation and synthesis were 6.0–7.5 and 6.0–7.0, respectively. Trehalose degradation was inhibited by ATP and trehalose analogs, whereas the synthetic activity was inhibited by Pi (Ki=2.0 mM). The enzyme was highly specific towards trehalose, Pi, glucose and α-glucose-1-phosphate. The stoichiometry of the reaction between trehalose, Pi, glucose and α-glucose-1-phosphate was 1:1:1:1 (molar ratio). The Km values were 61, 4.7, 24 and 6.3 mM for trehalose, Pi, glucose and α-glucose-1-phosphate, respectively. Under physiological conditions, A. bisporus trehalose phosphorylase probably performs both synthesis and degradation of trehalose. 相似文献