首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochalasin B (CB) has been used as a tool to ascertain whether the increase in the rate of 3-O-methylglucose (3-O-MeG) uptake between the 8th and the 16th day of development in chick embryo fibroblasts could be attributed to an increase in the number of hexose transport carriers. There was a 2—3-fold difference in glucose-specific CB binding between the 8- and the 16-day cells, a difference which is comparable to the previously reported differences in rates of 3-O-MeG uptake. We therefore suggest that glucose-specific CB binding represents binding to the 3-O-MeG carrier and that the increase in the rate of 3-O-MeG uptake from the 8th and the 16th day of development is probably due to an increase in the number of hexose carriers.  相似文献   

2.
To investigate the molecular changes in cell-surface glycoproteins during chick embryo development, fibroblasts from 8- and 16-day embryos were extensively digested by pronase after (i) metabolic labeling with radioactive precursors and (ii) external labeling. Two main classes of glycopeptide pronase digestion product were distinguished by Sephadex G-50 column chromatography. The large material excluded was mostly composed of glycosaminoglycans. The small retarded glycopeptides underwent age-related modifications. Those in the 8-day cells were mainly N-linked, whereas 16-day cells contained both O- and N-linked glycopeptides. The evolution of high-mannose chains in younger cells to complex-type chains in the older cells is suggested by (i) the decrease in the mannose-to-galactose and mannose-to-N-acetylglucosamine ratio with embryo development, and (ii) the fact that endo-β-N-acetylglucosaminidase H treatment released more oligomannosyls from younger than from older embryo cell glycopeptides. Small glycopeptides were also more highly sialylated in 16-day cells than in 8-day cells. The present results provide the first biochemical evidence that both quantitative and qualitative modifications occur in cell-surface glycoconjugates during the late stages of chick embryo development.  相似文献   

3.
The induction of cytochrome P-450 by phenobarbital was studied in primary cultures of chick embryo hepatocytes. The rate of the de novo synthesis of the induced form of cytochrome P-450 was measured directly and specificially, using form-specific anti-cytochrome antibodies that quantitatively immunoprecipitated this form from the radiolabeled hepatocytes. Additionally, the steady-state levels of the cytochrome were estimated spectrophotometrically and electrophoretically. In the presence of phenobarbital the synthesis of cytochrome P-450PB by cultured hepatocytes was markedly accelerated. Furthermore, the same cytochrome P-450PB form was induced by phenobarbital in vivo in chicken liver and in the cultured chick embryo hepatocytes. Their identity was judged from immunological and electrophoretic properties of these induced cytochromes. Immunological cross-reactivity was also detected between the cytochrome P-450PB forms from chick embryo hepatocytes and from adult rat liver. The immunological cross-reactivity observed between the phenobarbital-induced cytochrome P-450 forms from different species was not observed between the different cytochrome forms with the same liver (Thomas, P.E., Reik, L.M., Ryan, D.E. and Levin, W. (1981) J. Biol. Chem. 256, 1044–1052). Implications as to the evolutionary origin of the different cytochrome forms are discussed.  相似文献   

4.
Chick embryo retinas contain a peptide factor that inhibits DNA synthesis in explants of chick embryo retina. The inhibitory factor, obtained by acid/ethanol extraction from 15-day-old chick embryo retinas, was partially purified by affinity chromatography on heparin-sepharose CL-6B and gel filtration on Sephadex G-100. The inhibitor reduced DNA synthesis with maximal effects observed in retinal explants from 7 to 8-day-old chick embryos. The inhibitory effect became apparent after 10 h of incubation and reached the maximum levels after 16 h. DNA-inhibiting activity was heat and acid-stable and was destroyed by trypsin and alkaline treatments. The inhibitory effect was observed in retinal explants incubated in a medium free froml-glutamine, and the addition of this compound to the medium reduced the inhibitory effect in a concentration-dependent manner.  相似文献   

5.
Summary Intranuclear microtubules appear in chick embryo fibroblasts upon infection with Frog Virus 3 (FV 3). Both the diameter and the annular shape of the microtubule profiles, established from electron microscopic observations using a goniometer, suggest that they are identical to naturally occurring cytoplasmic microtubules. Furthermore, the use of vinblastine allowed demonstration of the tubulin composition of the intranuclear microtubules.  相似文献   

6.
The gene MUS81 (Methyl methansulfonate, UV sensitive) was identified as clone 81 in a two-hybrid screen using the Saccharomyces cerevisiae Rad54 protein as a bait. It encodes a novel protein with a predicted molecular mass of 72,316 (632 amino acids) and contains two helix-hairpin-helix motifs, which are found in many proteins involved in DNA metabolism in bacteria, yeast, and mammals. Mus81p also shares homology with motifs found in the XPF endonuclease superfamily. Deletion of MUS81 caused a recessive methyl methansulfonate- and UV-sensitive phenotype. However, mus81Δ cells were not significantly more sensitive than wild-type to γ-radiation or double-strand breaks induced by HO endonuclease. Double mutant analysis suggests that Rad54p and Mus81p act in one pathway for the repair of, or tolerance to, UV-induced DNA damage. A complex containing Mus81p and Rad54p was identified in immunoprecipitation experiments. Deletion of MUS81 virtually eliminated sporulation in one strain background and reduced sporulation and spore viability in another. Potential homologs of Mus81p have been identified in Schizosaccharomyces pombe, Caenorhabditis elegans and Arabidopsis thaliana. We hypothesize that Mus81p plays a role in the recognition and/or processing of certain types of DNA damage (caused by UV and MMS) during repair or tolerance processes involving the recombinational repair pathway. Received: 9 December 1999 / Accepted: 24 February 2000  相似文献   

7.
Inhibitors of (a) DNA topoisomerases (novobiocin and nalidixic acid) and of (b) eukaryotic DNA polymerases α (cytosine arabinoside) and β (dideoxythymidine) blocked different steps of DNA repair, demonstrated by the effects of the inhibitors on the relaxation of supercoiled DNA nucleoids following treatment of human cell cultures with ultraviolet light (1–3 J/m2) or MNNG (5 or 20 μM) and the subsequent restoration of the supercoiled nucleoids during repair incubation. Changes in the supercoiling of nucleoid DNA were assayed by analysis of their sedimentation profiles in 15–30% neutral sucrose gradients. Inhibition of repair by novobiocin was partially reversible; upon its removal from the culture medium, the nucleoid DNA of repairing cells became relaxed. The DNA polymerase inhibitors allowed the initial relaxation of DNA after treatment of the cells with ultraviolet or MNNG but delayed the regeneration of rapidly-sedimenting (supercoiled) nucleoid DNA for 2–4 h. Dideoxythymidine (1 mM) was more effective than cytosine arabinoside (1 μM) in producing this delay, but neither inhibitor by itself blocked repair permanently. Incubation of ultraviolet-irradiated cells with 1 μM cytosine arabinoside plus 1 mM dideoxythymidine blocked the completion of repair for 24 h, whereas incubation with 10 μM cytosine arabinoside or 5 mM dideoxythymidine produced only temporary repair delays of 2–4 h. Thus, it is likely that the two DNA polymerase inhibitors act upon separate targets and that both targets are involved in repair. It is concluded from these and from previous studies that (1) the DNA repair-sensitive target of novobiocin and nalidixic acid in vivo is not a DNA polymerase, but, rather, a DNA topoisomerase; (2) this target affects an initial step of DNA repair leading to the relaxation of supercoiled DNA; (3) the DNA polymerization step of repair may involve both α- and β-type DNA polymerases; and (4) in repair, one type of DNA polymerase may substitute for another.  相似文献   

8.
The effect of theophylline on poly(ADP-ribosyl)ation was investigated. The poly(ADP-ribose) synthetase activity in vitro was markedly reduced in the liver nuclei prepared from theophylline-treated chick embryo. This reduction was not due to the enzyme inhibition by theophylline contamination in the nuclear fraction. The hydroxyapatite column chromatographic analysis of [3H]adenosine-labelled poly(ADP-ribose) molecules formed in vivo revealed that the in vivo formation of poly(ADP-ribose) molecules was also decreased by theophylline administration. The theophylline-induced reduction of poly(ADP-ribose) synthesis was not due to either low NAD levels or to a decrease in the chain length of the poly(ADP-ribose) molecule, rather this reduction was derived from a decrease in the number of poly(ADP-ribose) molecules. Possible mechanisms related to reduction of poly(ADP-ribose) synthesis in vivo are discussed.  相似文献   

9.
Summary The resorption of the uncalcified cartilage matrix of the middle third of the diaphysis in the chick embryo tibia has been studied using histological, histochemical and electron microscopic techniques.The first stage in the resorption process affects the periosteal bone, which is breached by osteoclasts at one or several points. Capillary vessels and clear, apparently undifferentiated cells penetrate through the holes so formed and reach the cartilage. The loss of acid proteoglycans to a depth of 10–20 m into the matrix is the first sign of cartilage resorption; it is followed by the digestion of collagen fibrils, the opening of cell lacunae, chondrocyte degeneration and fragmentation and, lastly, the complete dissolution of the cartilage. This process is mediated by cells which probably derive from perivascular elements. Most of these cells have an undifferentiated appearance, but they have macrophagic properties, as is shown by phagocytotic activity along their plasma membrane, by the presence of lysosome-like bodies in their cytoplasm, and by their intense acid phosphatase activity. Resorption by giant cells of chondroclastic type only occurs at a late stage.Supported by grants from the Italian National Research Council  相似文献   

10.
Summary Experimental chick embryos were incubated at 37.5°C till day 7 and after day 10, and at 40.5°C on days 7–10; their optic lobes and cerebral hemispheres at day 10 and at hatching were compared with controls incubated at 37.5°C only. Cell numbers at day 10 were directly counted by a new method involving formalin fixation and cell disaggregation by gentle sonication. At hatching, body weights, organ weights and organ DNA (cell numbers) were the same in experimentals and in controls, for both optic lobes and cerebral hemispheres, though the protein contents were significantly higher in experimentals. However, at 10 days (end of neuron proliferation) the weights and the cell numbers in experimentals were significantly higher. Two possible explanations have been offered: 1. Elevated neuron population in experimental animals at day 10 is followed by their elevated death rate, or 2. The increment in neuron number is permanent but at hatching it is overshadowed by the population of other cells.An abstract of this work has been presented (Zamenhof, 1975)  相似文献   

11.
鸡胚成纤维细胞cDNA表达文库的构建   总被引:2,自引:0,他引:2  
鸡胚成纤维细胞(CEF)是研究鸡传染性法氏囊病病毒(IBDV)的主要细胞材料,而构建CEF的cDNA表达文库是筛选IBDV在CEF中的细胞受体,研究细胞嗜性的基础平台。采用Gateway技术构建CEF的表达文库,避免使用限制性内切酶切割cDNA,能够解决常规方法构建cDNA文库的技术缺陷。该技术将CEF的mRNA分离纯化后,以5′端生物素标记的Oligo(dT)primer为引物反转录后连接Adapter,层析柱纯化,通过BP重组反应构建cDNA入门文库,其平均滴度为1.1×106cfu/mL,文库总容量为1.2×107cfu,平均插入片段为2243bp,重组率为100%。通过LR重组反应将入门文库转换为表达文库,经测定平均滴度为5×105cfu/mL,文库总容量为5.5×106cfu,平均插入片段为2411bp,重组率为100%。结果表明,所构建的文库具有较高的重组率和较大的库容量,可作为较高质量的文库来研究IBDV的相关基因,为研究病毒受体和病毒入侵途径,进一步了解IBDV的致病机理奠定了基础。  相似文献   

12.
The interplay between intrinsic and extrinsic factors is essential for the transit into different cell states during development. We have analyzed the expression and function of FGF10 and FGF-signaling during the early stages of the development of otic neurons. FGF10 is expressed in a highly restricted domain overlapping the presumptive neurogenic region of the chick otic placode. A detailed study of the expression pattern of FGF10, proneural, and neurogenic genes revealed the following temporal sequence for the onset of gene expression: FGF10>Ngn1/Delta1/Hes5>NeuroD/NeuroM. FGF10 and FGF receptor inhibition cause opposed effects on cell determination and cell proliferation. Ectopic expression of FGF10 in vivo promotes an increase in NeuroD and NeuroM expression. BrdU incorporation experiments showed that the increase in NeuroD-expressing cells is not due to an increase in cell proliferation. Inhibition of FGF receptor signaling in otic explants causes a severe reduction in Neurogenin1, NeuroD, Delta1, and Hes5 expression with no change in non-neural genes like Lmx1. However, it does not interfere with NeuroD expression within the CVG or with neuroblast delamination. The loss of proneural gene expression caused by FGF inhibition is not caused by decreased cell proliferation or by increased cell death. We suggest that FGF signaling in the otic epithelium is required for neuronal precursors to withdraw from cell division and irreversibly commit to neuronal fate.  相似文献   

13.
Endogenous DNA damage induced by hydrolysis, reactive oxygen species and alkylation modifies DNA bases and the structure of the DNA duplex. Numerous mechanisms have evolved to protect cells from these deleterious effects. Base excision repair is the major pathway for removing base lesions. However, several mechanisms of direct base damage reversal, involving enzymes such as transferases, photolyases and oxidative demethylases, are specialized to remove certain types of photoproducts and alkylated bases. Mismatch excision repair corrects for misincorporation of bases by replicative DNA polymerases. The determination of the 3D structure and visualization of DNA repair proteins and their interactions with damaged DNA have considerably aided our understanding of the molecular basis for DNA base lesion repair and genome stability. Here, we review the structural biochemistry of base lesion recognition and initiation of one-step direct reversal (DR) of damage as well as the multistep pathways of base excision repair (BER), nucleotide incision repair (NIR) and mismatch repair (MMR).  相似文献   

14.
Summary Nuclear sap proteins from liver of 12-, 15-, 19-day-old embryos and 1-day-old chicks were resolved by one-and two-dimensional gel electrophoresis. Although the protein patterns from various stages of development have remarkable similarities, some qualitative and quantitative differences were found among these patterns. The most pronounced changes were detected in protein with molecular weight of 100 K which was very abundant in nuclei of 12-day-old embryos and disappeared in nuclei of older embryos and in protein with molecular weight of 40 K which rapidly diminished after hatching.  相似文献   

15.
Summary The present work demonstrates that a normal stage-XIII hypoblast, if submitted to an X-ray dose of 6,000 rads (sufficient to stop cell division), retains the capacity to induce axis formation on the chick epiblast. Examination of the process of hypoblast formation indicates, in agreement with previous findings, that a hypoblastic layer can form in the absence of cell division from an irradiated stage-X blastoderm. Furthermore, it is observed that this hypoblastic layer, formed in the absence of cell division, can induce the development of an embryonic axis when combined with a normal stage-XIII epiblast.  相似文献   

16.
Replicative DNA synthesis in normal human fibroblasts was inhibited by 50% when they were X-irradiated (8 Gy) and made permeable 30 min later, whereas only a slight inhibition (20%) was observed in similarly treated ataxia-telangiectasia cells. Treatment of irradiated normal cells with caffeine (2 mM) before permeabilization reversed the inhibitory effects of X-rays, buf caffeine had no effect on DNA synthesis in permeable ataxia-telangiectasia cells. Diadenosine tetraphosphate (0.1 mM) did not affect DNA synthesis in permeable normal fibroblasts.  相似文献   

17.
The distribution of ultraviolet-induced repair patches along DNA loops attached to the nuclear matrix, was investigated by digestion with DNA-degrading enzymes and neutral sucrose gradient centrifugation. When DNA was gradually removed by DNAase 1, pulse label incorporated by ultraviolet-irradiated cells during 10 min in the presence of hydroxyurea or hydroxyurea/arabinosylcytosine showed similar degradation kinetics as prelabelled DNA. No preferential association of pulse label with the nuclear matrix was observed, neither within 30 min nor 13 h after irradiation. When the pulse label was incorporated by replicative synthesis under the same conditions, a preferential association of newly-synthesized DNA with the nuclear matrix was observed. Single-strand specific digestion with nuclease S1 of nuclear lysates from ultraviolet-irradiated cells, pulse labelled in the presence of hydroxyurea/arabinosylcytosine, caused a release of about 70% of the prelabelled DNA and 90% of the pulse-labelled DNA from the rapidly sedimenting material in sucrose gradients. The results suggest no specific involvement of the nuclear matrix in repair synthesis, a random distribution of repair patches along the DNA loops, and simultaneously multiple incision events per DNA loop.  相似文献   

18.
Summary Spontaneous cutaneous wounds occur in avian embryos (chick, duck, quail) in various prominent parts of the body, notably the elbow, the knee and the outer face of feather buds. The frequency and size and the light and electron microscopic morphology of elbow wounds in the chick embryo are described. The cutaneous lesion appears in over 80% of the embryos at around 7 days of incubation, persists through 14 days, and finally heals completely at around 16 days of incubation. No trace of the wound is visible after that age. Wound healing of these spontaneous lesions was analysed with light microscopy (using indirect immunofluorescence for the localization of type I collagen, fibronectin and laminin) and electron microscopy. The main feature of the very slow healing process, as compared with the rapid cicatrization of experimental excision wounds, appears to be a continuous damage of the healing epidermis, until, finally, definitive wound closure occurs between 14 and 16 days of incubation. In the damaged region, where the epidermis is absent, the dermis exhibits an increased density of type I collagen fibres and of fibronectin. The upper face of the bare dermis is deprived of laminin. Spontaneous lesions do not occur in isolated wings explanted on the chick chorioallantoic membrane, where the wings do not become mobile and are not in contact with the amnion. The observations and explantation experiments suggest that the skin damage is caused by friction and abrasion of the bending elbow against the amnion or the amniotic fluid.  相似文献   

19.
Summary The localization of ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis and thus in cell growth, was determined in the 4.5-day-old chick embryo, using two independent methods of analysis. ODC protein was identified by indirect immunofluorescence with a monospecific ODC antibody, and catalytically active ODC was identified by autoradiography with -(5-3H) difluoromethylornithine. Both methods revealed a basically similar distribution of ODC within the embryo. Among the organs, the brain exhibited the highest ODC levels. ODC levels were also high in spinal cord, mesonephric tubules and heart. Similar levels, but confined to limited areas, were found in liver tissue, head mesenchyme, and the oral and pharyngeal regions. Organs that exhibited high ODC levels are all engaged in rapid growth, as well as in extensive tissue remodeling and differentiation.  相似文献   

20.
Summary The myotome of early chick embryos was investigated histochemically by means of the acetylcholinesterase (AChE) reaction.Light-microscopically, at the cervical level, the myotome was first recognized and AChE activity demonstrated at stage 13 (2 day-old embryo). Subsequently, the myotome elongated ventro-laterally along the inner surface of the dermomyotome and reached the ventro-lateral end of the dermomyotome at stage 17 to 18 (3 day-old embryo). AChE activity in the myotome showed subsequent increase in intensity during the course of development. The myotome consisted mainly of AChE-positive cells displaying enzymatic activity along the nuclear membrane and within the cytoplasm. In contrast, almost all cells of the dermomyotome and the interstitial cells were AChE-negative.Electron-microscopically, the myotome cells of the 2 day-old embryo and the cells in the dorso-medial portion of the myotome of the 3 day-old embryo were morphologically undifferentiated; AChE activity was detected in the nuclear envelope and in single short profiles of the endoplasmic reticulum (ER). On the other hand, in the 3 day-old embryo the cells in the ventro-lateral portion of the myotome showed AChE activity in the nuclear envelope, numerous profiles of the ER and some Golgi complexes. These AChE-positive cells were regarded as developing myogenic cells based on their morphological characteristics.The present findings indicate (i) that the appearance of AChE activity in the cytoplasm is the first sign of the differentiation of myogenic cells, and (ii) that in these myogenic cells the increase in AChE activity is based on the development of the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号