首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Edelstein's model
?E=F(M, E)
,
?M=G(M, E)+D?2M?s2
,
M(s,0)=?(s)
,
E(s,0)=ψ(s)
, where τ ? 0 and ?∞<s<∞, F(M, E>) = (K1+Mm)(K2+Mm)?k1E, G(M, E)= k1E ? k2M, m ? 2, describes the behavior of two basic chemical species during the cellular differentiation in a linear ensemble of the same cell type. We prove the existence and uniqueness of a travelling-wavefront solution. We also demonstrate one kind of stability for this solution.  相似文献   

2.
In an accompanying publication by Duckwitz-Peterlein, Eilenberger and Overath ((1977) Biochim. Biophys. Acta 469, 311–325) it is shown that the exchange of lipid molecules between negatively charged vesicles consisting of total phospholipid extracts from Escherichia coli occurs by the transfer of single lipid monomers or small micelles through the water. Here a kinetic interpretation is presented in terms of a rate constant, k?, for the escape of lipid molecules from the vesicle bilayer into the water. The evaluated rate constants are k?P = (0.86 ± 0.05) · 10?5s?1 and k?E = (1.09 ± 0.13) · 10?6s?1 for phospholipid molecules with trans-Δ9-hexadecenoate and trans-Δ9-octadecenoate, respectively, as the predominant acyl chain component. The rate constants are discussed in terms of the acyl chain and polar head group composition of the lipids.  相似文献   

3.
Quercetin inhibited a dog kidney (Na+ + K+)-ATPase preparation without affecting Km for ATP or K0.5 for cation activators, attributable to the slowly-reversible nature of its inhibition. Dimethyl sulfoxide, a selector of E2 enzyme conformations, blocked this inhibition, while the K+-phosphatase activity was at least as sensitive to quercetin as the (Na+ + K+)-ATPase activity, all consistent with quercetin favoring E1 conformations of the enzyme. Oligomycin, a rapidly-reversible inhibitor, decreased the Km for ATP and the K0.5 for cation activators, and its inhibition was also diminished by dimethyl sulfoxide. Although oligomycin did not inhibit the K+-phosphatase activity under standard assay conditions, a reaction presumably catalyzed by E2 conformations, its effects are nevertheless accommodated by a quantitative model for that reaction depicting oligomycin as favoring E1 conformations. The model also accounts quantitatively for effects of both dimethyl sulfoxide and oligomycin on Vmax, Km for substrate, and K0.5 for K+, as well as for stimulation of phosphatase activity by both these reagents at low K+ but high Na+ concentrations.  相似文献   

4.
Substitution of the active site zinc ion of carboxypeptidase A by cadmium yields an enzyme inactive towards ordinary peptide substrates. However, a substrate analog (BzGlyNHCH2CSPheOH) containing a thioamide linkage at the scissile position is cleaved to the thioacid. The kinetic parameters and their pH dependencies are kcatKm = 5.04 × 104 min?1M?1, decreasing with either acid or base (PKE1 = 5.64, pKE2 = 9.55), and kcat = 1.02 × 102 min?1, decreasing with acid (pKES = 6.61). The thiopeptide is less efficiently cleaved by native (zinc) carboxypeptidase A. This cadmium-sulfur synergism supports a mechanism wherein the substrate amide is activated by metal ion coordination to its (thio) carbonyl.  相似文献   

5.
Luit Slooten  Adriaan Nuyten 《BBA》1984,766(1):88-97
(1) Rates of ATP synthesis and ADP-arsenate synthesis catalyzed by Rhodospirillum rubrum chromatophores were determined with the firefly luciferase method and by a coupled enzyme assay involving hexokinase and glucose-6-phosphate dehydrogenase. (2) Vm for ADP-arsenate synthesis was about 2-times lower than Vm for ATP-synthesis. With saturating [ADP], K(Asi) was about 20% higher than K(Pi). With saturating [anion], K(ADP) was during arsenylation about 20% lower than during phosphorylation. (3) Plots of 1v vs. 1[substrate] were non-linear at low concentrations of the fixed substrate. The non-linearity was such as to suggest a positive cooperativity between sites binding the variable substrate, resulting in an increased VmKm ratio. High concentrations of the fixed substrate cause a similar increase in VmKm, but abolish the cooperativity of the sites binding the variable substrate. (4) Low concentrations of inorganic arsenate (Asi) stimulate ATP synthesis supported by low concentrations of Pi and ADP about 2-fold. (5) At high ADP concentrations, the apparent Ki of Asi for inhibition of ATP-synthesis was 2–3-times higher than the apparent Km of Asi for arsenylation; the apparent Ki of Pi for inhibition of ADP-arsenate synthesis was about 40% lower than the apparent Km of Pi for ATP synthesis. (6) The results are discussed in terms of a model in which Pi and Asi compete for binding to a catalytic as well as an allosteric site. The interaction between these sites is modulated by the ADP concentration. At high ADP concentrations, interaction between these sites occurs only when they are occupied with different species of anion.  相似文献   

6.
The rates of electron exchange between ferricytochrome c (CIII)3 and ferrocytochrome c (CII) were observed as a function of the concentrations of ferrihexacyanide (FeIII) and ferrohexacyanide (FeII) by monitoring the line widths of several proton resonances of the protein. Addition of FeII to CIII homogeneously increased the line widths of the two downfield paramagnetically shifted heme methyl proton resonances to a maximal value. This was interpreted as indicating the formation of a stoichiometric complex, CIII·FeII, in the over-all reaction:
CIII+FeII?k?1k1CIII·FeII?k?2k2CII·FeIII?k?3k3CIII+FeII
Values for k1k?1 = 0.4 × 103m?1and k2 = 208 s?1, respectively, were calculated from the maximal change in line width observed at pH 7.0 and 25 °C. Changes in the line width of CIII in the presence of FeII and either KCl or FeIII suggest that complexation is principally ionic, that FeIII and FeII compete for a common site. Addition of saturating concentrations of FeIII to CIII produced only minor changes in the nuclear magnetic resonance spectrum of CIII suggesting that complexation occurs on the protein surface.Addition of FeIII to CII in the presence of excess FeII (to retain most of the protein as CII) increased the line width of the methyl protons of ligated methionine 80. A value for k?2 ≈ 2.08 × 104 s?1 was calculated from the dependence of linewidth on the concentration of FeII at 24 °C. These rates are shown to be consistent with the over-all rates of reduction and oxidation previously determined by stopped flow measurements, indicating that k2 and k?2 were rate limiting. From the temperature dependence the enthalpies of activation are 7.9 and 15.2 kcal/mol for k2 and k?2, respectively.  相似文献   

7.
Proton inventory investigations of the hydrolysis N-acetylbenzotriazole at pH 3.0 (or the equivalent point on the pD rate profile) have been conducted at two different temperatures and at ionic strengths ranging from 0 to 3.0 M. The solvent deuterium isotope effects and proton inventories are remarkably similar over this wide range of conditions. The proton inventories suggest a cyclic transition state involving four protons contributing to the solvent deuterium isotope effect for the water-catalyzed hydrolysis. The hydrolysis data are described by the equation kn = ko (1 ? n + nπa1)4 with πa1 ~ 0.74, where ko is the observed first-order rate constant in protium oxide, n is the atom fraction of deuterium in the solvent, kn is the rate constant in a protium oxide-deuterium oxide mixture, and πa1 is the isotopic fractionation factor.  相似文献   

8.
Delocalized chemiosmotic coupling of oxidative phosphorylation requires that a single-value correlation exists between the extent of Δ\?gmH+ and the kinetic parameters of respiration and ATP synthesis. This expectation was tested experimentally in nigericin-treated plant mitochondria in single combined experiments, in which simultaneously respiration (in State 3 and in State 4) was measured polarographically, FΔψ (which under these conditions was equivalent to Δ\?gmH+) was evaluated potentiometrically from the uptake of tetraphenylphosphonium+ and the rate of phosphorylation was estimated from the transient depolarization of mitochondria during State 4-State 3-State 4 transitions. The steady-state rates of the different biochemical reactions were progressively inhibited by specific inhibitors active with different modalities on various steps of the energy-transducing process: succinate respiration was inhibited competitively with malonate or noncompetitively with antimycin A, or by limiting the rate of transport into the mitochondria of the respiratory substrate with phenylsuccinate; Δ\?gmH+ was dissipated by uncoupling with increasing concentrations of valinomycin; ADP phosphorylation was limited with oligomycin. The results indicate generally that when the rate of respiratory electron flow is decreased, a parallel inhibition of the rate of phosphorylation is also observed, while very limited effects can be detected on the extent of Δ\?gmH+. This behavior is in marked contrast to the effect of uncoupling where the decreased rate of ATP synthesis is clearly due to energy limitation. Extending previous observations in bacterial photosynthesis and in respiration by animal mitochondria and submitochondrial particles the results indicate, therefore, that respiration tightly controls the rate of ATP synthesis, with a mechanism largely independent of Δ\?gmH+. These data cannot be reconciled with a delocalized chemiosmotic coupling model.  相似文献   

9.
The Km(app) of ADP for photophosphorylation in lettuce chloroplasts was measured both at various light intensities and in the presence of various uncoupler (nigericin + K+) concentrations. Lowering the light intensity results in both, a decrease in the rate of phosphorylation and a several fold decrease in the Km(app) of ADP for the reaction. However, when increasing concentrations of the uncoupler nigericin + K+ are employed, the rate of photophosphorylation is decreased but a several-fold increase in the Km(app) of ADP for the reaction is observed. The results are discussed in terms of the chemiosmotic hypothesis. It is suggested that these effects might indicate the existence of a mechanism controlling the rate of ATP formation which is different than the formation of the electrochemical gradient.  相似文献   

10.
The binding of the crustacean selective protein neurotoxin, toxin B-IV, from the nemertine Cerebratulus lacteus to lobster axonal vesicles has been studied. A highly radioactive, pharmacologically active derivative of toxin B-IV has been prepared by reaction with Bolton-Hunter reagent. Saturation binding and competition of 125I-labeled toxin B-IV by native toxin B-IV have shown specific binding of 125I-labeled toxin B-IV to a single class of binding sites with a dissociation constant of 5–20 nM and a binding site capacity, corrected for vesicle sidedness, of 6–9 pmol per mg membrane protein. This compares to a value of 3.8 pmol [3H]saxitoxin bound per mg in the same tissue. Analysis of the kinetics of toxin B-IV association (k+1=7.3·105M?1·s?1) and dissociation (k? 1=2·10?3s?1) shows a nearly identical Kd of about 3 nM. There is no competition of toxin B-IV binding by purified toxin from Leiurus quinquestriatus venom while Centruroides sculpturatus Ewing toxin I appears to cause a small enhancement of toxin B-IV binding.  相似文献   

11.
Galactose transport by human platelets has been studied by measuring the cellular accumulation of the radiolabeled sugar during brief periods of suspension in varying concentrations of galactose. Weighted least-squares regression curves fitted to the measurements (initial velocity versus galactose concentration) indicate that a kinetic model with two saturable components is statistically more consistent with the data than a model based upon a single process (P < 0.001). For the two-component model Km1 = 0.29 mM, V1 = 1.2 mmol/min per 1015platelets, Km2 = 46 mM, V2 = 117 mmol/min per 1015platelets. The fact that galactose metabolites did not accumulate during the initial phase of uptake indicates that the uptake process is not mediated by enzymatic catalysis. Surface binding also appears inadequate to explain the uptake. The most likely basis for the kinetic data, therefore, is membrane transport. The kinetics are consistent with transport by coexistent membrane structures as well as with transport by a single structure manifesting negative cooperativity.  相似文献   

12.
Commercial [5-14C]mevalonate is shown to contain several radioactive impurities, which give artifactually high amounts of Hyamine bound, volatile acidic radioactivity when incubated with killed or living rat renal cortex slices, as compared with [5-14C]mevalonate purified either by liquid-liquid partition chromatography or through the enzymically generated R-5-phospho-[5-14C]mevalonate by ion-exchange chromatography. The artifactual 14CO2 results were not diluted by incubation with increasing amounts of unlabelled mevalonate, whereas the 14CO2 and [14C]cholesterol produced by rat renal cortex slices incubated with purified [5-14C]mevalonate were both diluted to the same extent by unlabelled mevalonate. It is concluded that R[5-14C]mevalonate is genuinely oxidized to 14CO2invitro, and that purification of substrate before its use is necessary. Production of 14CO2 and various [14C]lipids from purified [5-14C]mevalonate, as a function of time and substrate concentration, by renal cortex and liver slices, is described.  相似文献   

13.
The kinetics of bisulfite addition to 5-fluorouracil were studied as a function of increasing concentrations of potential general acids. Values of kobsd[SO3=] measured at 25°C and ionic strength 1.0 M increased linearly and then became invariant with increasing concentrations of either HSO3? or (OHCH2CH2)2N+C(CH2OH)3 HCl (BisTris+HCl). A small kinetic hydrogen-deuterium isotope effect (kHSkDS = 1.10) was observed for the general acid catalysed portion of the addition reaction. The kinetics of bisulfite elimination from 5-fluoro-5,6-dihydrouracil-6-sulfonate were studied in ethanolamine buffers. As previously observed with 1,3-dimethyl-5,6-dihydrouracil-6-sulfonate, this reaction is subject to general base catalysis and exhibits a large kinetic hydrogen-deuterium isotope effect (k2H2Ok2D2O = 3.8). The kinetic results for the addition reaction are consistent with a multistep reaction pathway involving the initial formation of an oxyanion sulfite addition intermediate (II) which subsequently adds a proton and undergoes tautomerization to yield the final 5-fluoro-5,6-dihydrouracil-6-sulfonate product. Thus the elimination of bisulfite from 5-fluoro-5,6-dihydrouracil-6-sulfonate probably proceeds by an ElcB mechanism which involves, at relatively low concentrations of general base, rate determining general base catalyzed proton abstraction from carbon 5 to yield intermediate II followed by the rapid elimination of sulfite to yield 5-fluorouracil. These results may be related to both the enzymatically catalyzed dehalogenation of bromoand iodouracil and the methylation of deoxyuridylate by thymidylate synthetase.  相似文献   

14.
(1) H+/electron acceptor ratios have been determined with the oxidant pulse method for cells of denitrifying Paracoccus denitrificans oxidizing endogenous substrates during reduction of O2, NO?2 or N2O. Under optimal H+-translocation conditions, the ratios H+O, H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were 6.0–6.3, 4.02, 5.79 and 3.37, respectively. (2) With ascorbate/N,N,N′,N′-tetramethyl-p-phenylenediamine as exogenous substrate, addition of NO?2 or N2O to an anaerobic cell suspension resulted in rapid alkalinization of the outer bulk medium. H+N2O, H+NO?2 for reduction to N2 and H+NO?2 for reduction to N2O were ?0.84, ?2.33 and ?1.90, respectively. (3) The H+oxidant ratios, mentioned in item 2, were not altered in the presence of valinomycinK+ and the triphenylmethylphosphonium cation. (4) A simplified scheme of electron transport to O2, NO?2 and N2O is presented which shows a periplasmic orientation of the nitrite reductase as well as the nitrous oxide reductase. Electrons destined for NO?2, N2O or O2 pass two H+-translocating sites. The H+electron acceptor ratios predicted by this scheme are in good agreement with the experimental values.  相似文献   

15.
(i) It is proved that only four independent constants can ever be obtained by extrapolation procedures applied to non-hyperbolic steady-state or binding data, (ii) Analysis of the algebraic graphs yx, (1/y)(1/x), y(yx) and (xy)/x is shown to require a knowledge of the sign of six curve shape determinants. In each case, the sign is a necessary and sufficient condition for a specific curve shape feature, (iii) The precise graphical effect of positive and negative co-operativity then requires the definition of two reference curves, the osculating hyperbola at zero substrate concentration, OH(0), and the osculating hyperbola at infinite substrate concentration OH(∞). These are better first order approximations than the Hill equation, (iv) Rules for determining unambiguously the sign of initial, final and overall co-operativity coefficients by inspection of non-hyperbolic binding curves are then possible, (v) These rules require that saturation data for:
y=i=1naixii=0nβixi
be fitted by computer for low concentrations to the hyperbola:
OH(o)=(-a12ψ1120)x[(-a1β0ψ1120)+x]
while regression of high substrate concentration data is to:
OH(∞)=(anβn)x[(φn,n-1anβn)+x]
. Comparisons of the best fit pseudo-kinetic constants then gives the type of co-operativity present in an unambiguous way with no assumptions as to molecular mechanism, (vi) These rules are then applied to the MWC and KNF allosteric models of ligand binding and the constraints necessary for specific curve shape effects are given, (vii) The graphical expression of positive or negative final co-operativity depends only on events at high substrate concentration but overall and initial co-operativities produce specific geometric effects depending upon the difference between behaviour of saturation data at both extremes of concentration, (viii) This apparent anomaly is explained by a discussion of the relationships between the osculating hyperbolae, the theoretical parent hyperbola and the Hill plot asymptotes.  相似文献   

16.
A new mechanism that involves dissociative electron transfer in the energy transducing step is set forward for bacterial luciferase catalyzed light emission. The proposal involves (1) dissociation of the 4a-hydroperoxyflavin to a flavin radical and ?O2?, accounting for 570 and 620nm absorption, (2) ?O2? addition to the aldehyde carbonyl to form a peroxyl radical, (3) abstraction of H from an enzyme thiol group to form RCH(OOH)OH, (4) thiyl radical abstraction of the H on C in RCH(OOH)OH, a step which can show a kHkD of ca. 4, and (5) dissociative electron- transfer, a highly exothermic step that leads to a protonated flavin excited state, a carboxylic acid and water.  相似文献   

17.
(1) Treatment of (Na+ + K+)-ATPase from rabbit kidney outer medulla with the γ-35S labeled thio-analogue of ATP in the presence of Na+ + Mg2+ and the absence of K+ leads to thiophosphorylation of the enzyme. The Km value for [γ-S]ATP is 2.2 μM and for Na+ 4.2 mM at 22°C. Thiophosphorylation is a sigmoidal function of the Na+ concentration, yielding a Hill coefficient nH = 2.6. (2) The thio-analogue (Km = 35 μM) can also support overall (Na+ + K+)-ATPase activity, but Vmax at 37°C is only 1.3 γmol · (mg protein)? · h?1 or 0.09% of the specific activity for ATP (Km = 0.43 mM). (3) The thiophosphoenzyme intermediate, like the natural phosphoenzyme, is sensitive to hydroxylamine, indicating that it also is an acylphosphate. However, the thiophosphoenzyme, unlike the phosphoenzyme, is acid labile at temperatures as low as 0°C. The acid-denatured thiophosphoenzyme has optimal stability at pH 5–6. (4) The thiophosphorylation capacity of the enzyme is equal to its phosphorylation capacity, indicating the same number of sites. Phosphorylation by ATP excludes thiophosphorylation, suggesting that the two substrates compete for the same phosphorylation site. (5) The (apparent) rate constants of thiophosphorylation (0.4 s?1 vs. 180 s?1), spontaneous dethiophosphorylation (0.04 s?1 vs. 0.5 s?1) and K+-stimulated dethiophosphorylation (0.54 s?1 vs. 230 s?1) are much lower than those for the corresponding reactions based on ATP. (6) In contrast to the phosphoenzyme, the thiophosphoenzyme is ADP-sensitive (with an apparent rate constant in ADP-induced dethiophosphorylation of 0.35 s?1, KmADP = 48 μM at 0.1 mM ATP) and is relatively K+-insensitve. The Km for K+ in dethiophosphorylation is 0.9 mM and in dephosphorylation 0.09 mM. The thiophosphoenzyme appears to be for 75–90% in the ADP-sensitive E1-conformation.  相似文献   

18.
10?5 M cyclic AMP has high permeability in human erythrocyte ghosts (p = 0.061 · 10?6cm · s?1). Saturation of influx and efflux occurs. Kztoi = 4.43 mM. Vztoi = 259.6 μM · min?1. Kztio = 0.475 μM. Vztio = 28.3 μM · min?1 at 30°C. Equilibrium exchange entry of cyclic AMP has similar kinetics to zero trans influx, though the system does show counterflow. Cythochalasin B is an apparent competitive inhibitor of cyclic AMP exit. (Ki = 3.9 · 10?7M).Control experiments indicated that cyclic AMP remains intact during incubation with red blood cell ghosts and is contained within the intravesicular space during the transport experiments.  相似文献   

19.
The oxygen dependence of cellular energy metabolism.   总被引:14,自引:0,他引:14  
Suspensions of cultured C 1300 neuroblastoma cells, sarcoma 180 ascites tumor cells, and Tetrahymena pyriformis cells were used to study the oxygen dependence of cellular energy metabolism. Cellular respiration was found to be almost independent of oxygen tension to values of less than 20 μm with an apparent Km for oxygen of less than 1 μm. In contrast, the reduction of mitochondrial cytochrome c was found to be dependent on oxygen tension at all values from 240 μm downward. Oxygen dependence was also observed in terms of cellular energy metabolism expressed as adenosine triphosphate and adenosine diphosphate concentrations. These data provide direct evidence that in intact cells mitochondrial oxidative phosphorylation is oxygen dependent throughout the physiological range of oxygen tension (air saturation and below). The respiratory rate is maintained constant when the oxygen tension is lowered by decreasing values of the cytosolic [ATP][ADP][Pi] and intramitochondrial [NAD]+][NADH] because these regulatory parameters adjust to maintain a constant rate of ATP synthesis. The lack of oxygen dependence in the respiratory rate means that the rate of cellular ATP utilization is essentially oxygen independent until the mitochondria can no longer synthesize ATP at the required rate and [ATP][ADP][Pi].  相似文献   

20.
Na+, K+ and Cl? concentrations (cji) and activities (aji), and mucosal membrane potentials (Em) were measured in epithelial cells of isolated bullfrog (Rana catesbeiana) small intestine. Segments of intestine were stripped of their external muscle layers, and bathed (at 25°C and pH 7.2) in oxygenated Ringer solutions containing 105 mM Na+ and Cl? and 5.4 mM K+. Na+ and K+ concentrations were determined by atomic absorption spectrometry and Cl? concentrations by conductometric titration following extraction of the dried tissue with 0.1 M HNO3. 14C-labelled inulin was used to determine extracellular volume. Em was measured with conventional open tip microelectrodes, aCli with solid-state Cl?-selective silver microelectrodes and aNai and aKi with Na+- and K+-selective liquid ion-exchanger microelectrodes. The average Em recorded was ?34 mV. cNai, cKi and cCli were 51, 105 and 52 mM. The corresponding values for aNai, aKi and aCli were 18, 80 and 33 mM. These results suggest that a large fraction of the cytoplasmic Na+ is ‘bound’ or sequestered in an osmotically inactive form, that all, or virtually all the cytoplasmic K+ behaves as if in free solution, and that there is probably some binding of cytoplasmic Cl?. aCli significantly exceeds the level corresponding to electrochemical equilibrium across the mucosal and baso-lateral cell membranes. Earlier studies showed that coupled mucosal entry of Na+ and Cl? is implicated in intracellular Cl? accumulation in this tissue. This study permitted estimation of the steady-state transapical Na+ and Cl? electrochemical potential differences (Δμ&#x0304;Na and Δμ&#x0304;Cl). Δμ&#x0304;Na (?7000 J · mol?1; cell minus mucosal medium) was energetically more than sufficient to account for Δμ&#x0304;Cl (1000–2000 J · mol?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号