首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
A strain of Escherichia coli lacking RNAase III and containing thermolabile RNAase E and RNAase P was labeled with 32Pi at a non-permissive temperature. RNA molecules were separated by two-dimensional polyacrylamide gel electrophoresis. Most of the small RNA species were isolated and analyzed for the presence of 5′ nucleoside triphosphates. In 16 of the 22 species analyzed a significant number of the individual molecules contained 5′ di or triphosphates. We conclude, therefore, that very little endonucleolytic RNA processing occurs in the absence of the three RNA processing enzymes RNAase III, RNAase E and RNAase P.  相似文献   

2.
5′-Nucleotidase (EC 3.1.3.5) has been solubilized and purified 1200-fold from guinea-pig skeletal muscle, to a specific activity of 40 U/mg protein. The purified enzyme yields a single protein band on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Guinea-pig skeletal muscle 5′-nucleotidase is extremely sensitive to inhibition by nucleoside di- and triphosphates. The inhibition is of the competitive type, and can be reversed only by strong excess of Mg2+. Nucleoside diphosphates are more powerful inhibitors than nucleoside triphosphates. The Ki values for ADP and ATP are 0.036 and 0.28 μM, respectively. The purified enzyme does not require exogenous cations for maximal activity and is inhibited by EDTA. This inhibition is reversed by divalent cations. This indicates that the enzyme contains a tightly bound metal cation.  相似文献   

3.
Acid nucleoside triphosphatase (Acid NTPase), an enzyme which catalyzes the hydrolysis of all nucleoside triphosphates to the corresponding diphosphates was purified from human serum with a purification factor of 190 and a recovery of 31%. The molecular weight was 75,000 as estimated by gel filtration. Gel-electrophoresis revealed an Rf-value of 0.11, and the isoelectric point was determined at pH 4.4. It exhibited a temperature optimum of 44 degrees C and the activation energy was estimated to be 41.6 kJ/mol. The enzyme was active in the absence of divalent cations, since activity was not inhibited by EDTA. The presence of this chelator reduced the Km-value from 70 to 40 microM. Inhibitor experiments revealed that tartrate was a weak mixed-type noncompetitive inhibitor, Ki = 88 mM. The enzyme was specific for the hydrolysis of nucleoside triphosphates. P-nitrophenyl phosphate was not accepted as a substrate. The enzyme revealed optimum activity at the exceptionally acid pH of 3.0. These unique characteristics indicate the presence of a novel enzyme.  相似文献   

4.
Here we described an nucleoside triphosphate diphosphohydrolase (NTPDase) activity in living trophozoites of Trichomonas gallinae. The enzyme hydrolyzes a variety of purine and pyrimidine nucleoside di- and triphosphates in an optimum pH range of 6.0-8.0. This enzyme activity was activated by high concentrations of divalent cations, such as calcium and magnesium. Contaminant activities were ruled out because the enzyme was not inhibited by classical inhibitors of ATPases (ouabain, 5.0 mM sodium azide, oligomycin) and alkaline phosphatases (levamisole). A significant inhibition of ATP hydrolysis (38%) was observed in the presence of 20 mM sodium azide. Sodium orthovanadate inhibited ATP and ADP hydrolysis (24% and 78%), respectively. The apparent K(M) (Michaelis constant) values were 667.62+/-13 microM for ATP and 125+/-5.3 microM for ADP. V(max) (maximum velocity) values were 0.44+/-0.007 nmol Pi min(-1) per 10(6) trichomonads and 0.91+/-0.12 nmol Pi min(-1) per 10(6) trichomonads for ATP and ADP, respectively. Moreover, we showed a marked decrease in ATP, ADP and AMP hydrolysis when the parasites were grown in the presence of penicillin and streptomycin. The existence of an NTPDase activity in T. gallinae may be involved in pathogenicity, protecting the parasite from the cytolytic effects of the extracellular nucleotides.  相似文献   

5.
A nucleoside triphosphatase/deoxynucleoside triphosphatase associated with the chromatin fraction from a highly purified preparation of pea nuclei has been isolated and characterized. The purified enzyme has a molecular weight of 47,000 as checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and it has an isoelectric point of 6.6. In the presence of divalent cations (Mg2+ = Mn2+ greater than Ca2+), this enzyme hydrolyzes nucleoside triphosphates or deoxynucleoside triphosphates. Hydrolysis is optimal at pH 7.5 and is significantly inhibited by relatively low concentrations of quercetin, but is not sensitive to vanadate, nitrate, or oligomycin. The enzyme has a rather broad nucleotide substrate specificity and has a Km for MgATP2- of 0.6 mM. The enzyme activity is stimulated over 3-fold by Ca2+ and calmodulin, and the stimulation is blocked by the Ca2+ chelator EGTA and by the calmodulin antagonists compound 48/80 and chlorpromazine.  相似文献   

6.
Two protein phosphatases were isolated from rat liver nuclei. The enzymes, solubilized from crude chromatin by 1 M NaCl, were resolved by column chromatography on Sephadex G-150, DEAE-Sepharose and heparin-Sepharose. The phosphorylase phosphatase activity of one of the enzymes (inhibitor-sensitive phosphatase) was inhibited by heat-stable phosphatase inhibitor proteins and also by histone H1. This phosphatase had a molecular weight of approx. 35 000 both before and after 4 M urea treatment. Its activity was specific for the β-subunit of phosphorylase kinase. Pretreatment with 0.1 mM ATP inhibited the enzyme only about 10%, and it did not require divalent cations for activity. On the basis of these properties, this nuclear enzyme was identified as the catalytic subunit of phosphatase 1. The other phosphatase (polycation-stimulated phosphatase) was insensitive to inhibition by inhibitor 1, and it was stimulated 10-fold by low concentrations of histone H1 (A0.5 = 0.6 μM). This enzyme had a molecular weight of approx. 70 000 which was reduced to approx. 35 000 after treatment with 4 M urea. It dephosphorylated both the α- and β-subunits of phosphorylase kinase. The enzyme was inhibited more than 90% by preincubation with 0.1 mM ATP and did not require divalent cations for activity. On the basis of these properties, this nuclear enzyme was identified as phosphatase 2A.  相似文献   

7.
Certain biochemical characteristics of an adenylate cyclase that is activated by low concentrations of histamine (Ka, 8 μm) and that is present in cell-free preparations from the dorsal hippocampus of guinea pig brain have been studied. Histamine increased the maximal reaction velocity of adenylate cyclase without altering the Km (0.18 mm) for its substrate, MgATP. Increasing concentrations of free Mg2+ stimulated enzymatic activity; the kinetic properties of this activation by Mg2+ suggest the existence of a Mg2+ allosteric site on the enzyme. Histamine increased the affinity of this apparent site for free Mg2+. Free ATP was a competitive inhibitor with respect to the MgATP substrate. The apparent potency of free ATP as an inhibitor increased in the presence of histamine. In the presence of Mg2+, low concentrations of Ca2+ markedly inhibited adenylate cyclase activity; half-maximal inhibition of both basal and histamine-stimulated enzyme activity occurred at 40 μm Ca2+. Other divalent cations, including Zn2+, Cu2+, and Cd2+, were also inhibitory. Of the divalent cations tested, only Co2+ and Mn2+ could replace Mg2+ in supporting histamine-stimulated adenylate cyclase activity. The nucleoside triphosphates GTP and ITP increased basal adenylate cyclase activity and markedly potentiated the stimulation by histamine. Preincubation of adenylate cyclase with 5′-guanylylimidodiphosphate dramatically increased enzyme activity; in this activated state, the adenylate cyclase was relatively refractory to further stimulation by histamine or F?. The subcellular distribution of histamine-sensitive adenylate cyclase activity was studied in subfractions from guinea pig cerebral cortex. The highest total and specific activities were observed in those fractions enriched in nerve endings, while adenylate cyclase activity was not detectable in the brain cytosol fraction. A possible physiological role for this histamine-sensitive adenylate cyclase in neuronal function is discussed.  相似文献   

8.
M Seki  T Enomoto  F Hanaoka  M Yamada 《Biochemistry》1987,26(10):2924-2928
We have detected at least four forms of DNA-dependent ATPase in mouse FM3A cell extracts [Tawaragi, Y., Enomoto, T., Watanabe, Y., Hanaoka, F., & Yamada, M. (1984) Biochemistry 23, 529-533]. The purified fraction of one of the four forms, ATPase B, has been shown to have DNA helicase activity by using a DNA substrate which permits the detection of limited unwinding of the helix. The DNA substrate consists of single-stranded circular fd DNA and the hexadecamer complementary to the fd DNA, which bears an oligo(dT) tail at the 3' terminus. The helicase activity and DNA-dependent ATPase activity cosedimented at 5.5 S on glycerol gradient centrifugation. The helicase required a divalent cation for activity (Mg2+ congruent to Mn2+ greater than Ca2+). The optimal concentrations of these divalent cations were 5 mM. The requirement of divalent cations of the DNA helicase activity was very similar to that for the DNA-dependent ATPase activity of ATPase B. The helicase activity was absolutely dependent on the presence of a nucleoside triphosphate. ATP was the most effective cofactor among the ribo- and deoxyribonucleoside triphosphates tested, and considerable levels of helicase activity were observed with other ribo- and deoxyribonucleoside triphosphates. The efficiency of a nucleoside triphosphate to serve as cofactor for the helicase activity correlated with the capacity of the nucleotide to serve as substrate for the DNA-dependent ATPase activity. The nonhydrolyzable ATP analogues such as adenosine 5'-O-(3-thiotriphosphate) were not effective for the helicase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of nucleoside triphosphates (ATP and GTP) on phosphodiesterase (PDE) of brain and outer segments of the retina enriched or devoid of protein modulators were studied. In the case of retinal outer segment PDE the enzyme activity was considerably inhibited by both nucleosides only when the enzyme was separated from the inhibitor. In case of brain PDE, on the contrary, the effect of the nucleosides was much more pronounced in the enzyme preparation coupled with the protein activator, calmodulin. The latter when added to brain PDE devoid of the activator in the presence of ATP and GTP considerably reduced the enzyme activity. An addition of the inhibitor simultaneously with GTP to the purified PDE of outer segments increased the PDE activity. The constants for the inhibition of brain PDE coupled with calmodulin and retinal outer segment PDE separated from the inhibitor by ATP and GTP were determined.  相似文献   

10.
Alkylsufatase induction in resting cell suspensions of P. aeruginosa was inhibited by exogenously supplied adenosine or by ATP (2mM). Adenine phosphate had no effect while AMP or ADP caused a slight stimulation of induction. The inhibitory effect of ATP required the presence of added Mg2+, was not reversed by cyclic-AMP (2mM), and was independent of the nature of the inducer. Of a number of other nucleoside triphosphates tested, only UTP (2mM) acted as an inhibitor of induction. These nucleotides at external concentrations of 6mM also inhibited alkysulfatase induction in actively growing cells.  相似文献   

11.
Transport of Ca2+ in membrane vesicles of the cyanobacterium Anabaena variabilis has been investigated. The light membranes previously shown to carry a Mg2+-dependent, Ca2+-stimulated ATPase (Lockau, W. and Pfeffer, S. (1982) Z. Naturforsch. 37C, 658–664) accumulate Ca2+ upon addition of ATP, whereas the (heavier) thylakoids do not. A stoichiometry of 0.3 Ca2+ taken up per ATP hydrolyzed has been determined from initial rates, which is considered to be an underestimation of the true stoichiometry of the pump. Calcium transport and Ca2+-stimulated ATPase activity are both sensitive to Na3VO4 (an inhibitor of ATPases forming a phosphorylated intermediate), show the same pH optimum and a comparable dependence on ATP concentration. Calcium transport is also supported by nucleoside triphosphates other than ATP, although at lower rates. Accumulation of calcium is abolished by an ionophore of divalent cations, ionophore A23187, but is resistant to ionophores of monovalent cations and to the inhibitor of F1-F0-type ATPases, N,N′-dicyclohexylcarbodiimide. It is concluded that the ATPase is a primary calcium pump.  相似文献   

12.
Homogeneous preparations of cytoplasmic membrane isolated from Staphylococcus aureus 6538P exhibited membrane-associated adenosine triphosphatase (ATPase) activity. Membrane ATPase activity was activated by divalent cations (4.0 mM: Mg2+ greater than Mn2+ greater than Co2+ greater than Zn2+), and ATP was hydrolyzed more readily than other nucleoside triphosphates and phosphorylated substrates. The pH optimum for the membrane ATPase was 6.5. The ATPase could not be released from the membrane by differential osmotic treatments, but detergent treatment effectively solubilized active enzyme. The nonionic detergent Triton X-100 (1%) released a protein with ATPase activity, after substrate-dependent staining in polyacrylamide gels, that differed slightly in electrophoretic migration when compared to the active enzyme solubilized with sodium dodecyl sulfate (0.1%). Membrane-associated ATPase activity was inhibited by N,N'-dicyclohexylcarbodiimide (0.001 to 1 mM) and NaF (50% inhibition at 5 mM NaF). Azide and trypsin inhibited activity, whereas ouabain had a slight inhibitory effect. Diethylstilbestrol showed appreciable activation of the membrane ATPase over the range employed (0.001 to 1 mM).  相似文献   

13.
A deoxyuridine triphosphate nucleotidohydrolase (dUTPase) which is induced in KB cells infected with herpes simplex virus type 1 (HSV-1) was purified approximately 175-fold using affinity, hydrophobic, adsorption, and ion-exchange chromatography techniques. Of the nucleoside triphosphates commonly found in DNA and RNA, only dUTP acted as a substrate for the enzyme, and the apparent Km was 4 microM. While the HSV-1-induced dUTPase exhibited activity in the absence of added divalent cations, the activity was stimulated by Mg2+ and inhibited by EDTA. The inhibition caused by EDTA was reversed by Mg2+, Co2+, or Mn2+. The HSV-1-induced dUTPase was also inhibited by hydroxymercuribenzoate and to a lesser degree by pyrophosphate but not by orthophosphate. The molecular weight of the enzyme was estimated to be 53,000, and its isoelectric point was 5.8. The enzyme exhibited maximal activity over the pH range of 6.5-8.5. The enzyme was thermolabile at 45 degrees C, exhibiting a t1/2 of 35 min. The HSV-1-induced dUTPase was distinguishable from the KB dUTPase by its elution pattern on the various chromatography matrixes, isoelectric point, migration in polyacrylamide gels, thermostability, and response to divalent cations.  相似文献   

14.
An ATPase was newly identified on the inner face of the plasma membrane of the extremely halophilic archaebacterium Halobacterium halobium. The enzyme was released into an alkaline EDTA solution and purified by several chromatographic steps in the presence of sulfate at 1 M or over. The molecular weight of the native enzyme was around 320,000; it is most likely composed of two pairs (alpha 2 beta 2) of 86,000 (alpha) and 64,000 (beta) subunits. The enzyme hydrolyzed ATP and other nucleoside triphosphates but neither ADP nor AMP. The enzyme required divalent cations, among which Mn2+ was most effective (Mg2+ activated 35% of Mn2+). The ATPase activity was optimum at pH between 5.5 and 6, particularly in a nearly saturated Na2SO4 (or Na2SO3) solution, while it was very low in a chloride salt solution even at 4 M at any pH. The Km value for ATP was 1.4 mM and the K1 value for ADP (competitive to ATP) was 0.08 mM. Neither azide (a specific inhibitor for F0F1-and F1-ATPase) nor vanadate (for E1E2-ATPase) inhibited the enzyme. The ATPase was stable at high concentrations of sulfate. At low concentrations of salts, or at low temperatures even in high NaCl concentrations, the enzyme was inactivated. Although the ATPase isolated here from halobacterial membrane has such unusual characteristics, it is the most probable candidate for the (catalytic part of) halobacterial ATP synthase, which differs from F0F1-ATPase/synthase (Mukohata et al. (1986) J. Biochem. 99, 1-8; Mukohata and Yoshida (1987) J. Biochem. 101, 311-318).  相似文献   

15.
The membrane-bound ATPase of Mycoplasma gallisepticum selectively hydrolyzed purine nucleoside triphosphates and dATP. ADP, although not a substrate, inhibited ATP hydrolysis. The enzyme exhibited a pH optimum of 7.0 to 7.5 and an obligatory requirement for divalent cations. Dicyclohexylcarbodiimide at a concentration of 1 mM inhibited 95% of the ATPase activity at 37 degrees C, with 50% inhibition occurring at 22 microM dicyclohexylcarbodiimide. Sodium or potassium (or both) failed to stimulate activity by greater than 37%. Azide (2.6 mM), diethylstilbestrol (100 micrograms/ml), p-chloromercuribenzoate (1 mM), and vanadate (50 microM) inhibited 50, 91, 89, and 60%, respectively. The ATPase activity could not be removed from the membrane without detergent solubilization. Although most detergents inactivated the enzyme, the dipolar ionic detergent N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (0.1%) solubilized approximately 70% of the enzyme with only a minor loss in activity. The extraction led to a twofold increase in specific activity and retention of inhibition by dicyclohexylcarbodiimide and ADP. Glycerol greatly increased the stability of the solubilized enzyme. The properties of the membrane-bound ATPase are not consistent with any known ATPase. We postulate that the ATPase functions as an electrogenic proton pump.  相似文献   

16.
Nucleoside triphosphate pyrophosphohydrolase (EC 3.6.1.8) activity is associated with matrix vesicles purified from collagenase digests of fetal calf epiphyseal cartilage. This enzyme hydrolyzes nucleoside triphosphates to nucleotides and PPi, the latter inducing precipitation in the presence of Ca2+ and Pi. An assay for matrix vesicle nucleoside triphosphate pyrophosphohydrolase is developed using beta, gamma-methylene ATP as substrate. The assay is effective in the presence of matrix vesicle-associated ATPase, pyrophosphatase, and alkaline phosphatase activities. A soluble nucleoside triphosphate pyrophosphohydrolase is obtained from matrix vesicles by treatment with 5 mM sodium deoxycholate. The solubilized enzyme induced the precipitation of calcium phosphate in the presence of ATP, Ca2+, and Pi. Extraction of deoxycholate-solubilized enzymes from matrix vesicles with 1-butanol destroys nucleoside triphosphate pyrophosphohydrolase activity while enhancing the specific activities of ATPase, pyrophosphatase, and alkaline phosphatase. In solutions devoid of ATP and matrix vesicles, concentrations of PPi between 10 and 100 microM induce calcification in mixtures containing initial Ca2+ X P ion products of 3.5 to 7.9 mM2. This finding plus the discovery of nucleoside triphosphate pyrophosphohydrolase in matrix vesicles supports the view that these extracellular organelles induce calcium precipitation by the enzymatic production of PPi. Nucleoside triphosphate pyrophosphohydrolase is more active against pyrimidine nucleoside triphosphates than the corresponding purine derivatives. The pH optimum is 10.0 and the enzyme is neither activated nor inhibited by Mg2+ or Ca2+ ions or mixtures of the two. Vmax at pH 7.5 for beta, gamma-methylene ATP is 0.012 mumol of substrate hydrolyzed per min per mg of protein and Km is below 10 microM. The enzyme is irreversibly destroyed at pH 4 and is stable at pH 10.5.  相似文献   

17.
An ATP diphosphohydrolase (EC 3.6.1.5) is an enzyme hydrolyzing pyrophosphate bonds in nucleoside di- and triphosphates with broad substrate specificity in the presence of divalent cations. The ATPase and ADPase activities in the enzyme purified to homogeneity from bovine aortic vessel wall were insensitive to oligomycin, ouabain, and various protease treatments, and sensitive to azide and Ap5A. Bovine aorta endothelial and smooth muscle cells were cultured separately to characterize the ectonucleotidase activities. The activities were dependent on the addition of divalent cations and had broad substrate specificity. The ecto-ATPase and -ADPase activities were insensitive to oligomycin, ouabain, and protease treatments, and sensitive to azide and Ap5A. No enzyme degrading only ADP was found in the aortic vessel wall. Moreover, antiserum raised against purified ATP diphosphohydrolase inhibited the ecto-ATPase and -ADPase activities. These results indicated that ecto-ATPase and ecto-ADPase are not separate enzymes but are expressed by one enzyme, ATP diphosphohydrolase.  相似文献   

18.
Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) was purified to near homogeneity from the spleens of rats made anemic by phenylhydrazine injection; the enzyme activity in these spleens was about 30 times higher than that in spleens of untreated rats. The purified enzyme preparation showed an apparent molecular weight of 58,500 and appeared to consist of three identical subunits each with a molecular weight of about 19,500. The purified enzyme catalyzed specifically the hydrolysis of dUTP, and no other naturally occurring nucleoside triphosphates could be hydrolyzed by this enzyme. The Km value for dUTP was 12 μm. Enzyme activity was inhibited by the addition of EDTA, whereas the enzyme preparation exhibited activity in the absence of added divalent cations. Activity was not affected by the addition of fluoride ion.  相似文献   

19.
A DNA-dependent ATPase has been purified from calf thymus. The enzyme hydrolyses ATP and dATP in the presence of heat-denatured DNA. It does not hydrolyse the corresponding nucleoside triphosphates of guanine, uridine and cytosine. The Km values for ATP and dATP are both 0.62 mM. The enzyme requires magnesium or manganese ions. Its sedimentation coefficient is about 4.4 S. The catalytic activity is inhibited by N-ethylmaleimide but is not sensitive to novobiocin and nalidixic acid which are potent inhibitors of bacterial DNA gyrase. In some cases, during purification, chromatographically distinct additional DNA-dependent ATPase activities were detected. Limited proteolysis or covalent modification of the enzyme in the tissues, or during the first steps of its extraction, are probably responsible for the appearance of these chromatographically distinct forms.  相似文献   

20.
G.D. Webster  J.B. Jackson 《BBA》1978,503(1):135-154
1. ATPase isolated from Rhodospirillum rubrum by chloroform extraction and purified by gel filtration or affinity chromatography shows three bands (α, β and γ) upon electrophoresis in sodium dodecyl sulphate.2. Ca2+-ATPase activity of the preparation is inhibited by aurovertin and efrapeptin but not by oligomycin. Activity may be inhibited by treatment with 4-chloro-7-nitrobenzofurazan and subsequently restored by dithiothreitol.3. The enzyme fails to reconstitute photophosphorylation in chromatophores depleted of ATPase by sonic irradiation.4. Most of the active protein from the crude chloroform extract binds to an affinity chromatography column bearing an immobilised ADP analogue but not to a column bearing immobilised pyrophosphate.5. In the absence of divalent cations, a component with a very high specific activity for Ca2+-ATPase is eluted from the column by 1.6 mM ATP. This protein migrates as a single band on 5% polyacrylamide gel electrophoresis and only possesses three subunits. At 12 mM ATP an inactive protein is eluted which does not run on acid or alkali polyacrylamide gels and shows a complex subunit structure.6. ATPase preparations prepared by acetone extraction or by sonic irradiation of chromatophores may also be purified 10-fold by affinity chromatography.7. The inclusion of 5 mM MgCl2 or CaCl2 during affinity chromatography of chloroform ATPase increases the capacity of the column for the enzyme and demands a higher eluting concentration of ATP.8. When the enzyme is more than 90% inhibited by efrapeptin or 4-chloro-7-nitrobenzofurazan, the binding characteristics of the enzyme are not affected.9. 10 mM Na2SO3, which greatly stimulates the Ca2+- and Mg2+-dependent ATPase activity of the enzyme and increases Ki (ADP) for Ca2+-ATPase from 50 to 850 μM, prevents binding to the affinity column. Binding may be restored by the addition of divalent cations.10. Na2SO3 increases the rate of ATP hydrolysis, ATP-driven H+ translocation and ATP-driven transhydrogenase in chromatophores.11. It is proposed that anions such as sulphite convert the chromatophore ATPase into a form which is a more efficient energy transducer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号