首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Galactinol synthase (GolS; EC 2.4.1.123) is a member of the glycosyltransferase eight family that catalyzes the first step in the biosynthesis pathway of the raffinose family of oligosaccharides (RFOs). The accumulation of RFOs in response to abiotic stress indicates a role for RFOs in stress adaptation. To obtain information on the roles of RFOs in abiotic stress adaptation in trees, we investigated the expression patterns of nine Populus trichocarpa GolS (PtrGolS) genes with special reference to stress responses. PtrGolS genes were differentially expressed in different organs, and the expressions of PtrGolS4 and PtrGolS6 were relatively high in all tested organs. The expression levels of all PtrGolS genes, except PtrGolS9, changed in response to abiotic stress in gene- and stress-type-specific manners. Moreover, short- and long-term stress treatments revealed that induction of PtrGolS by salt stress is obvious only in the early period of treatment (within 24 h), whereas water-deficit stress treatments continued to upregulate PtrGolS gene expression after two days of treatment, in addition to induction within 24 h of treatment. Consistent with these expression patterns, the galactinol content in leaves increased after four days of drought stress, but not under salt stress. Our findings suggest divergent roles for PtrGolS genes in abiotic stress responses in poplars.  相似文献   

3.
The cellulose synthase superfamily   总被引:30,自引:0,他引:30  
  相似文献   

4.
5.
Species- or lineage-specific genes can facilitate studying the unique characteristics of biological processes. Updated genome sequences in Populus trichocarpa were screened against thirty newly sequenced or resequenced plant genomes to identify a set of species-specific genes (PtSS). Forty PtSS genes have been isolated with no similarity to any sequence outside the P. trichocarpa genome, therefore have no annotated functions. Protein motif, intron/exon features, subcellular localization and gene expression were analyzed in these PtSS genes. Results reflect their basic genic characters, expression analysis and primary function exploration might provide insight to their possible involvements in lineage specific biological process in woody plants.  相似文献   

6.

Background  

The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl) families and one cellulose synthase (CesA) family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses.  相似文献   

7.

Background  

White lupin (Lupinus albus L.) roots efficiently take up and accumulate (heavy) metals, adapt to phosphate deficiency by forming cluster roots, and secrete antimicrobial prenylated isoflavones during development. Genomic and proteomic approaches were applied to identify candidate genes and proteins involved in antimicrobial defense and (heavy) metal uptake and translocation.  相似文献   

8.
9.
10.
11.
12.
13.
? Premise of the study: Microsatellite markers from cellulose synthase genes were developed for the Chinese white poplar, Populus tomentosa, to investigate the genetic diversity of wild germplasm resources and to further identify favorable alleles significantly associated with wood cellulose content. ? Methods and Results: Fifteen microsatellite markers were developed in P. tomentosa by deep sequencing of cellulose synthase genes. Polymorphisms were evaluated in 460 individuals from three climatic regions of P. tomentosa, and all 15 markers revealed polymorphic variation. The number of alleles per locus ranged from two to nine with an average of 4.3; the observed and expected heterozygosity per locus varied from 0.029 to 0.962 and from 0.051 to 0.713, respectively. ? Conclusions: These polymorphic markers will potentially be useful for genetic mapping and in molecular breeding for improvement of wood fiber traits in Populus.  相似文献   

14.
15.
Fructokinase (FRK) is the main fructose phosphorylase and plays an important role in catalyzing the irreversible reaction of free fructose phosphorylation. In order to study the regulatory effect of different forms and concentrations of nitrogen on PtFRK genes in Populus trichocarpa, seven genes encoding the hypothetical FRK proteins were identified in Populus trichocarpa genome by bioinformatics method. Phylogenetic analysis revealed that PtFRK family genes can be divided into two subgroups: SI (PtFRK 1, 3, 4, 6) and SII (PtFRK 2, 5, 7). The tissue-specific expression data obtained from PopGenIE indicate that PtFRK2, 3, 4 and 5 are expressed highly in the stem. Quantitative real-time RT-PCR illustrate that PtFRK1-7 showed different expression patterns in different tissues under different concentrations and morphological nitrogen application. Under high nitrate treatment, the expression levels of PtFRK1, 2, 3 and 6 in stem increased significantly, while under low nitrate treatment, only the expression of PtFRK1, 4 in the upper stem and the expression of PtFRK3, 5 in the lower stem increased significantly. In contrast, ammonium tends to inhibit the expression of PtFRKs in lower stems, the expression levels of PtFRK2, 3, 4 and 5 are significantly reduced under ammonium treatment. However, high ammonium had significant effects on PtFRK6 in the apical bud and upper leaves, which were 6 and 8 times of the control, respectively. These results laid the foundation for the study of the PtFRK gene family of poplar and provided a theoretical basis for the molecular mechanism of nitrogen regulating cell wall development.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01055-6.  相似文献   

16.
17.
18.
19.
A heterologous probe encoding phenylalanine ammonia-lyase (PAL) was used to identify PAL clones in cDNA libraries made with RNA from young leaf tissue of two Populus deltoides x P. trichocarpa F1 hybrid clones. Sequence analysis of a 2.4-kb cDNA confirmed its identity as a full-length PAl clone. The predicted amino acid sequence is conserved in comparison with that of PAL genes from several other plants. Southern blot analysis of popular genomic DNA from parental and hybrid individuals, restriction site polymorphism in PAL cDNA clones, and sequence heterogeneity in the 3' ends of several cDNA clones suggested that PAL is encoded by at least two genes that can be distinguished by HindIII restriction site polymorphisms. Clones containing each type of PAL gene were isolated from a poplar genomic library. Analysis of the segregation of PAL-specific HindIII restriction fragment-length polymorphisms demonstrated the existence of two independently segregating PAL loci, one of which was mapped to a linkage group of the poplar genetic map. Developmentally regulated PAL expression in poplar was analyzed using RNA blots. Highest expression was observed in young stems, apical buds, and young leaves. Expression was lower in older stems and undetectable in mature leaves. Cellular localization of PAL expression by in situ hybridization showed very high levels of expression in subepidermal cells of leaves early during leaf development. In stems and petioles, expression was associated with subepidermal cells and vascular tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号