首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pecht I  Gakamsky DM 《FEBS letters》2005,579(15):3336-3341
The interactions between the TCR and peptides bound to class I MHC encoded molecules (pMHC) and a mechanism for CD8 cooperation in this process are reviewed. Observation of two TCR/CD8 populations with different lateral diffusion rate constants as well as two distinct association phases of class I MHC tetramers ((pMHC)4) with T-cells suggest that the most efficient pMHC-T-cell association route corresponds to a fast tetramer binding to a colocalized CD8/TCR population, which apparently resides within membrane rafts. Thus, ligand-cell association starts by pMHC binding to the CD8. This rather fast step promotes pMHC association with CD8-proximal TCRs and thereby enhances the overall association process. The model suggests that this raft-associated CD8-TCR subpopulation is responsible for evoking T-cell activation.  相似文献   

2.
The CD8 coreceptor plays a crucial role in both T cell development in the thymus and in the activation of mature T cells in response to Ag-specific stimulation. In this study we used soluble peptides-MHC class I (pMHC) multimeric complexes bearing mutations in the CD8 binding site that impair their binding to the MHC, together with altered peptide ligands, to assess the impact of CD8 on pMHC binding to the TCR. Our data support a model in which CD8 promotes the binding of TCR to pMHC. However, once the pMHC/TCR complex is formed, the TCR dominates the pMHC/TCR dissociation rates. As a consequence of these molecular interactions, under physiologic conditions CD8 plays a key role in complex formation, resulting in the enhancement of CD8 T cell functions whose specificity, however, is determined by the TCR.  相似文献   

3.
Three protein fractions of the cytosol of the chick parathyroid glands, which had the sedimentation constants of 2.5 S, 3.7 S and 5.5 S, were found to bind with 1 alpha,25-dihydroxyvitamin D3. Among these proteins, the 3.7 S protein was assumed to be the specific receptor protein. The 3.7 S receptor protein was also capable of binding to 1 alpha,24-dihydroxyvitamin D3 but not 25-hydroxyvitamin D3. The binding affinity of 1 alpha,24(R)-dihydroxyvitamin D3 to the 3.7 S receptor protein was estimated to be 1.2 times greater than that of 1 alpha,25-dihydroxyvitamin D3, while 1 alpha,25-dihydroxyvitamin D3 bound to the receptor protein about 10 times stronger than 1 alpha,24(S)-dihydroxyvitamin D3. The dissociation constant for the receptor-1 alpha,25-dihydroxyvitamin D3 complex at 0 degrees C was 2.7 x 10(-11) M, the dissociation constants were calculated to be 2.2 x 10(-11) M and 2.6 x 10(-10) M for the complexes with 1 alpha,24(R)-dihydroxyvitamin D3 and 1 alpha,24(S)-dihydroxyvitamin D3.  相似文献   

4.
The CD8 coreceptor contributes to the recognition of peptide-MHC (pMHC) ligands by stabilizing the TCR-pMHC interaction and enabling efficient signaling initiation. It is unclear though, which structural elements of the TCR ensure a productive association of the coreceptor. The alpha-chain connecting peptide motif (alpha-CPM) is a highly conserved sequence of eight amino acids in the membrane proximal region of the TCR alpha-chain. TCRs lacking the alpha-CPM respond poorly to low-affinity pMHC ligands and are unable to induce positive thymic selection. In this study we show that CD8 participation in ligand binding is compromised in T lineage cells expressing mutant alpha-CPM TCRs, leading to a slight reduction in apparent affinity; however, this by itself does not explain the thymic selection defect. By fluorescence resonance energy transfer microscopy, we found that TCR-CD8 association was compromised for TCRs lacking the alpha-CPM. Although high-affinity (negative-selecting) pMHC ligands showed reduced TCR-CD8 interaction, low-affinity (positive-selecting) ligands completely failed to induce molecular approximation of the TCR and its coreceptor. Therefore, the alpha-CPM of a TCR is an important element in mediating CD8 approximation and signal initiation.  相似文献   

5.
The binding of oligomeric peptide-MHC (pMHC) complexes to cell surface TCR can be considered to approximate TCR-pMHC interactions at cell-cell interfaces. In this study, we analyzed the equilibrium binding of streptavidin-based pMHC oligomers (tetramers) and their dissociation kinetics from CD8(pos) T cells from 2C-TCR transgenic mice and from T cell hybridomas that expressed the 2C TCR or a high-affinity mutant (m33) of this TCR. Our results show that the tetramers did not come close to saturating cell-surface TCR (binding only 10-30% of cell-surface receptors), as is generally assumed in deriving affinity values (K(D)), in part because of dissociative losses from tetramer-stained cells. Guided by a kinetic model, the oligomer dissociation rate and equilibrium constants were seen to depend not only on monovalent association and dissociation rates (k(off) and k(on)), but also on a multivalent association rate (μ) and TCR cell-surface density. Our results suggest that dissociation rates could account for the recently described surprisingly high frequency of tetramer-negative, functionally competent T cells in some T cell responses.  相似文献   

6.
T cells have evolved a unique system of ligand recognition involving an antigen T cell receptor (TCR) and a coreceptor that integrate stimuli provided by the engagement of peptide-major histocompatibility complex (pMHC) antigens. Here, we use altered pMHC class I (pMHCI) molecules with impaired CD8 binding (CD8-null) to quantify the contribution of coreceptor extracellular binding to (i) the engagement of soluble tetrameric pMHCI molecules, (ii) the kinetics of TCR/pMHCI interactions on live cytotoxic T lymphocytes (CTLs), and (iii) the activation of CTLs by cell-surface antigenic determinants. Our data indicate that the CD8 coreceptor substantially enhances binding efficiency at suboptimal TCR/pMHCI affinities through effects on both association and dissociation rates. Interestingly, coreceptor requirements for efficient tetramer labeling of CTLs or for CTL activation by determinants displayed on the cell surface operated in different TCR/pMHCI affinity ranges. Wild-type and CD8-null pMHCI tetramers required monomeric affinities for cognate TCRs of KD < approximately 80 microM and approximately 35 microM, respectively, to label human CTLs at 37 degrees C. In contrast, activation by cellular pMHCI molecules was strictly dependent on CD8 binding only for TCR/pMHCI interactions with KD values >200 microM. Altogether, our data provide information on the binding interplay between CD8 and the TCR and support a model of CTL activation in which the extent of coreceptor dependence is inversely correlated to TCR/pMHCI affinity. In addition, the results reported here define the range of TCR/pMHCI affinities required for the detection of antigen-specific CTLs by flow cytometry.  相似文献   

7.
《Journal of molecular biology》2019,431(24):4941-4958
The coreceptor CD8αβ can greatly promote activation of T cells by strengthening T-cell receptor (TCR) binding to cognate peptide-MHC complexes (pMHC) on antigen presenting cells and by bringing p56Lck to TCR/CD3. Here, we demonstrate that CD8 can also bind to pMHC on the T cell (in cis) and that this inhibits their activation. Using molecular modeling, fluorescence resonance energy transfer experiments on living cells, biochemical and mutational analysis, we show that CD8 binding to pMHC in cis involves a different docking mode and is regulated by posttranslational modifications including a membrane-distal interchain disulfide bond and negatively charged O-linked glycans near positively charged sequences on the CD8β stalk. These modifications distort the stalk, thus favoring CD8 binding to pMHC in cis. Differential binding of CD8 to pMHC in cis or trans is a means to regulate CD8+ T-cell responses and provides new translational opportunities.  相似文献   

8.
T lymphocytes recognize peptides presented in the context of major histocompatibility complex (MHC) molecules on the surface of antigen presenting cells. Recognition specificity is determined by the alphabeta T cell receptor (TCR). The T lymphocyte surface glycoproteins CD8 and CD4 enhance T cell antigen recognition by binding to MHC class I and class II molecules, respectively. Biophysical measurements have determined that equilibrium binding of the TCR with natural agonist peptide-MHC (pMHC) complexes occurs with KD values of 1-50 microm. The pMHCI/CD8 and pMHCII/CD4 interactions are significantly weaker than this (KD >100 microm), and the relative roles of TCR/pMHC and pMHC/coreceptor affinity in T cell activation remain controversial. Here, we engineer mutations in the MHCI heavy chain and beta2-microglobulin that further reduce or abolish the pMHCI/CD8 interaction to probe the significance of pMHC/coreceptor affinity in T cell activation. We demonstrate that the pMHCI/CD8 coreceptor interaction retains the vast majority of its biological activity at affinities that are reduced by over 15-fold (KD > 2 mm). In contrast to previous reports, we observe that the weak interaction between HLA A68 and CD8, which falls within this spectrum of reduced affinities, retains substantial functional activity. These findings are discussed in the context of current concepts of coreceptor dependence and the mechanism by which TCR coreceptors facilitate T cell activation.  相似文献   

9.
Through a rational design approach, we generated a panel of HLA-A*0201/NY-ESO-1(157-165)-specific T cell receptors (TCR) with increasing affinities of up to 150-fold from the wild-type TCR. Using these TCR variants which extend just beyond the natural affinity range, along with an extreme supraphysiologic one having 1400-fold enhanced affinity, and a low-binding one, we sought to determine the effect of TCR binding properties along with cognate peptide concentration on CD8(+) T cell responsiveness. Major histocompatibility complexes (MHC) expressed on the surface of various antigen presenting cells were peptide-pulsed and used to stimulate human CD8(+) T cells expressing the different TCR via lentiviral transduction. At intermediate peptide concentration we measured maximum cytokine/chemokine secretion, cytotoxicity, and Ca(2+) flux for CD8(+) T cells expressing TCR within a dissociation constant (K(D)) range of ~1-5 μM. Under these same conditions there was a gradual attenuation in activity for supraphysiologic affinity TCR with K(D) < ~1 μM, irrespective of CD8 co-engagement and of half-life (t(1/2) = ln 2/k(off)) values. With increased peptide concentration, however, the activity levels of CD8(+) T cells expressing supraphysiologic affinity TCR were gradually restored. Together our data support the productive hit rate model of T cell activation arguing that it is not the absolute number of TCR/pMHC complexes formed at equilibrium, but rather their productive turnover, that controls levels of biological activity. Our findings have important implications for various immunotherapies under development such as adoptive cell transfer of TCR-engineered CD8(+) T cells, as well as for peptide vaccination strategies.  相似文献   

10.
In experiments where T cells interact with antigen-presenting-cells or supported bilayers bearing specific peptide-major-histocompatibility-complex (pMHC) molecules, T cell receptors (TCR) have been shown to form stable micrometer-scale clusters that travel from the periphery to the center of the contact region. pMHC molecules bind TCR on the opposing surface but the pMHC-TCR bond is weak and therefore pMHC can be expected to serially bind and unbind from TCR within the contact region. Using a novel mathematical analysis, we examine serial engagement of mobile clustered TCR by a single pMHC molecule. We determine the time a pMHC can be expected to remain within a TCR cluster. This also allows us to estimate the number of clustered TCR that are serially bound, and the distance a pMHC is transported by the clustered TCR. We find that TCR-pMHC binding alone does not allow substantial serial engagement of TCR and that the pMHC molecules are usually not transported to the center of the contact region by a single TCR cluster. We show that the presence of TCR coreceptors such as CD4 and CD8, or pMHC dimerization on the antigen-presenting cells, can substantially increase serial engagement and directed transport of pMHC. Finally, we analyze the effects of multiple TCR microclusters, showing that the size of individual clusters only weakly affects our prediction of TCR serial engagement by pMHC. Throughout, we draw parameter estimates from published data.  相似文献   

11.
Wei C  Han G  Jia G  Zhou J  Li C 《Biophysical chemistry》2008,137(1):19-23
Interactions of 5,10,15,20-Tetrakis(N-propylpyridinium-4-yl)-21H,23H-porphyrin (TPrPyP4) with dimer hairpin (G(4)T(4)G(4))2 and parallel four-stranded (TG(4)T)4 G-quadruplex DNAs in Na(+)-containing buffer were studied. The results show that two TPrPyP4 molecules bind to both G-quadruplexes by a noncooperative and nonequivalent binding mode, and there are one high affinity site and one low affinity site, the respective binding constants are 8.06x10(8) and 1.13x10(6) M(-1) for (G(4)T(4)G(4))2-TPrPyP4, 8.04x10(7) and 9.08x10(5)M(-1) for (TG(4)T)4-TPrPyP4. TPrPyP4 presents two lifetimes of about 5.8 and 12.0 ns in the complexes of G-quadruplexes-TPrPyP4. The primary results suggest that two TPrPyP4 molecules bind to both G-quadruplexes by terminal stacking and outside binding mode.  相似文献   

12.
Noncognate or self peptide-MHC (pMHC) ligands productively interact with T-cell receptor (TCR) and are always in a large access over the cognate pMHC on the surface of antigen presenting cells. We assembled soluble cognate and noncognate pMHC class I (pMHC-I) ligands at designated ratios on various scaffolds into oligomers that mimic pMHC clustering and examined how multivalency and density of the pMHCs in model clusters influences the binding to live CD8 T cells and the kinetics of TCR signaling. Our data demonstrate that the density of self pMHC-I proteins promotes their interaction with CD8 co-receptor, which plays a critical role in recognition of a small number of cognate pMHC-I ligands. This suggests that MHC clustering on live target cells could be utilized as a sensitive mechanism to regulate T cell responsiveness.  相似文献   

13.
Lymphocytes from the human (h) IL-2R alpha chain transgenic mice (TGM) constitutively express high affinity binding sites for hIL-2, consisting of transgenic h-IL-2R alpha and endogenous murine IL-2R beta, and therefore easily proliferate in vitro in response to hIL-2. Our study was undertaken to clarify the hIL-2-responsive lymphocyte subsets in the TGM, which should most likely reflect the normal distribution of m IL-2R beta expression. In both thymus and spleen, the majority of expanded cells by hIL-2 was CD3+CD4-CD8+ TCR alpha beta+ cells. The proliferation of CD4+ cells was not observed at all from either organ despite the expression of transgenic hIL-2R alpha. Potent cellular proliferation was also observed from the thymocytes that had been depleted of CD8+ cells, the expanded cells consisting of CD3- (15-40%) and CD3+ populations (60-85%). Among CD3+ cells, approximately the half portion expressed TCR alpha beta, whereas the other half was suggested to express TCR gamma delta. A variable portion (5-20%) of the CD3+ cells expressed CD8 (Lyt-2) in the absence of Lyt-3, and the CD3+CD8+ cells were confined preferentially to the TCR alpha beta- (TCR gamma delta+) population. In the culture of splenocytes depleted of CD8+ cells, however, the proliferated cells were mostly CD3-CD4-CD8-TCR-Mac1-, whereas a minor portion (10-30%) was CD3+CD4-CD8-TCR alpha beta- (TCR gamma delta+. Analysis of TCR genes at both DNA and mRNA levels confirmed the phenotypical observations. These results strongly suggested that IL-2R beta was constitutively and selectively expressed on the primary murine thymocytes and splenic T and NK cells, except for CD4+ cells in both organs.  相似文献   

14.
TCR engagement by peptide-MHC class I (pMHC) ligands induces a conformational change (Deltac) in CD3 (CD3Deltac) that contributes to T cell signaling. We found that when this interaction took place between primary T lineage cells and APCs, the CD8 coreceptor was required to generate CD3Deltac. Interestingly, neither enhancement of Ag binding strength nor Src kinase signaling explained this coreceptor activity. Furthermore, Ag-induced CD3Deltac was developmentally attenuated by the increase in sialylation that accompanies T cell maturation and limits CD8 activity. Thus, both weak and strong ligands induced CD3Deltac in preselection thymocytes, but only strong ligands were effective in mature T cells. We propose that CD8 participation in the TCR/pMHC interaction can physically regulate CD3Deltac induction by "translating" productive Ag encounter from the TCR to the CD3 complex. This suggests one mechanism by which the developmentally regulated variation in CD8 sialylation may contribute to the developmental tuning of T cell sensitivity.  相似文献   

15.
A procedure was developed for real-time measurement of the interaction between an archaeal TATA-binding protein (TBP) with stress-gene promoters from the archaeon Methanosarcina mazeii using surface plasmon resonance (SPR), the BIACORE 3000 equipment, and the SA (streptavidin) Sensor Chip. Measurements were based on the SPR optical phenomenon, which resulted in light extinction when TBP bound a promoter. This process, detected as a change in a particular angle, was recorded in a sensorgram. The BIA-evaluation program allowed the calculation of the equilibrium constant (K(A)) of the interaction of M. mazeii TBP with the promoters of the stress genes grpE, hsp70(dnaK), and hsp40(dnaJ) (0.47, 0.26, and 1.21x10(7)M(-1), respectively) and, for comparison, with the promoter of a non-heat-shock gene, orf16 (0.08x10(7)M(-1)). The association rate (k(a)) of the non-heat-shock gene orf16 was 0.4x10(4)M(-1)s(-1) and those for the stress genes, grpE, hsp70(dnaK), and hsp40(dnaJ) were higher: 2.8, 1.5, and 3.5x10(4)M(-1)s(-1), respectively. The new procedure will allow a comparative analysis of different TPBs and promoters (wild type and mutants) under physiologic and stress conditions, and a correlation of TBP binding parameters with constitutive and stress-induced gene expression.  相似文献   

16.
T-cell receptor (TCR) recognition of the myelin basic protein (MBP) peptide presented by major histocompatibility complex (MHC) protein HLA-DR2a, one of the MHC class II alleles associated with multiple sclerosis, is highly variable. Interactions in the trimolecular complex between the TCR of the MBP83-99-specific T cell clone 3A6 with the MBP-peptide/HLA-DR2a (abbreviated TCR/pMHC) lead to substantially different proliferative responses when comparing the wild-type decapeptide MBP90-99 and a superagonist peptide, which differs mainly in the residues that point toward the TCR. Here, we investigate the influence of the peptide sequence on the interface and intrinsic plasticity of the TCR/pMHC trimolecular and pMHC bimolecular complexes by molecular dynamics simulations. The intermolecular contacts at the TCR/pMHC interface are similar for the complexes with the superagonist and the MBP self-peptide. The orientation angle between TCR and pMHC fluctuates less in the complex with the superagonist peptide. Thus, the higher structural stability of the TCR/pMHC tripartite complex with the superagonist peptide, rather than a major difference in binding mode with respect to the self-peptide, seems to be responsible for the stronger proliferative response.  相似文献   

17.
The binding of Hoechst 33258 and DAPI to five different (A/T)4 sequences in a stable DNA hairpin was studied exploiting the substantial increase in dye fluorescence upon binding. The two dyes have comparable affinities for the AATT site (e.g. association constant K(a)=5.5 x 10(8) M(-1) for DAPI), and their affinities decrease in the series AATT > TAAT approximately equal to ATAT > TATA approximately equal to TTAA. The extreme values of K(a) differ by a factor of 200 for Hoechst 33258 but only 30 for DAPI. The binding kinetics of Hoechst 33258 were measured by stopped-flow under pseudo-first order conditions with an (A/T)4 site in excess. The lower-resolution experiments can be well represented by single exponential processes, corresponding to a single-step binding mechanism. The calculated association-rate parameters for the five (A/T)4 sites are similar (2.46 x 10(8) M(-1) s(-1) to 0.86 x 10(8) M(-1) s(-1)) and nearly diffusion-controlled, while the dissociation-rate parameters vary from 0.42 s(-1) to 96 s(-1). Thus the association constants are kinetically controlled and are close to their equilibrium-determined values. However, when obtained with increased signal-to-noise ratio, the kinetic traces for Hoechst 33258 binding at the AATT site reveal two components. The concentration dependencies of the two time constants and amplitudes are consistent with two different kinetically equivalent two-step models. In the first model, fast bimolecular binding is followed by an isomerization of the initial complex. In the second model, two single-step associations form two complexes that mutually exclude each other. For both models the four reaction-rate parameters are calculated. Finally, specific dissociation kinetics, using poly[d(A-5BrU)], show that the kinetics are even more complex than either two-step model. We correlate our results with the different binding orientations and locations of Hoechst 33258 in the DNA minor groove found in several structural studies in the literature.  相似文献   

18.
19.
Binding of peptide/MHC (pMHC) complexes by TCR initiates T cell activation. Despite long interest, the exact relationship between the biochemistry of TCR/pMHC interaction (particularly TCR affinity or ligand off-rate) and T cell responses remains unresolved, because the number of complexes examined in each independent system has been too small to draw a definitive conclusion. To test the current models of T cell activation, we have analyzed the interactions between the mouse P14 TCR and a set of altered peptides based on the lymphocytic choriomeningitis virus epitope gp33-41 sequence bound to mouse class I MHC D(b). pMHC binding, TCR-binding characteristics, CD8+ T cell cytotoxicity, and IFN-gamma production were measured for the peptides. We found affinity correlated well with both cytotoxicity and IFN-gamma production. In contrast, no correlation was observed between any kinetic parameter of TCR-pMHC interaction and cytotoxicity or IFN-gamma production. This study strongly argues for an affinity threshold model of T cell activation.  相似文献   

20.
The reaction rate constants and transient spectra of 11 flavonoids and 4 phenolic acids reacting with e(aq)- at neutral pH were measured. Absorption bands of the transients of e(aq)- reacting with the above compounds all located at a wavelength shorter than 400 nm. The e(aq)- scavenging abilities were divided into three groups: (+)catechin ((1.2 +/-0.1) x 10(8) M(-1)s(-1)) < 4-chromanol ((4.4 +/- 0.4) x 10(8) M(-1)s(-1)) < genistein ((6.2+/-0.4) x 10(9) M (-1) s(-1) approximately genistin ((8 +/- 1) x 10(9) M(-1)s(-1)) approximately rutin ((7.6 +/- 0.4) x M(-1)s(-1) approximately caffeic acid ((8.3 +/- 0.5) x 10(9)M(-1)s(-1)) < transcinnamic acid((1.1 +/- 0.1) x 10(10) M(-1)s(-1)) approximately p-coumaric acid ((1.1 +/- 0.1) x 10(10) M(-1)s(-1) approximately 2,4,6-trihydroxylbenzoic acid((1.1 +/- 0.1) x 10(10) M(-1)s(-1)) approximately baicalein ((1.1 +/- 0.5) x 10(10) M(-1)s(-1)) approximately baicalin((1.3 + 0.1) X 10(10) M(-1)s(-1)) approximately naringenin ((1.2 +/- 0.1) x 10(10) M(-1)s(-1)) approximately naringin ((1.0 +/- 0.1) x 10(10) M(-1)s(-1)) approximately gossypin((1.2 +/- 0.1) x 10(10) M(-1)s(-1)) approximately quercetin((1.3 +/- 0.5) x 10(10) M(-1)s(-1)). These results suggested that C4 keto group is the active site for e(aq)- to attack on flavonoids and phenolic acids, whereas the o-dihydroxy structure in B ring, the C2,3 double bond, the C3-OH group, and glucosylation, which are key structures that influence the antioxidant activities of flavonoids and phenolic acids, have little effects on the e(aq)- scavenging activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号