首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on the stability of creatine kinase isozymes.   总被引:1,自引:0,他引:1  
Research on the stabilizing properties of creatine kinase isozymes CK-BB, CK-MB, and CK-MM showed that minor alteration of their sequence and structure influenced their stability significantly. An analysis of the stability of the isozymes in storage after freeze drying indicates that creatine kinase isozymes are all in monomer form because of the loss of subunit interactions. Freeze-drying leads to the oxidization of CK-BB and rearrangement of CK-MB. There are also differences in the unfolding of the isozymes in urea. CK-BB and CK-MB are unfolded in lower urea concentrations than CK-MM. Differences in the thermal unfolding were also examined by differential scanning calorimetry. This paper discusses the potential biological significance of these results.  相似文献   

2.
The time course and dose-response to proteolysis of three dimeric isozymes of creatine kinase, CK-MM (muscle), CK-BB (brain), and CK-MB (heart) and the homologous monomer, arginine kinase were compared. Chymotrypsin and trypsin cause a rapid and significant loss of intact CK-BB, but limited hydrolysis of CK-MM. After 1h of hydrolysis by chymotrypsin, 80% of CK-MM is intact as judged by quantification of monomers after electrophoresis in sodium dodecyl sulfate. While 50% of the intact monomers of CK-MB remain under these conditions, no CK-BB monomers are detected. These results indicate that treatment with chymotrypsin leads to a CK-MB devoid of the B-subunit. When treated with trypsin for 1h, CK-MM is totally resistant to hydrolysis and all CK-BB is highly degraded. However, CK-MB exhibits approximately 90% intact monomers, indicating survival of intact B-subunit in CK-MB. This suggests that heterodimerization of a B-subunit with an M-subunit may have a protective effect against hydrolysis by trypsin. In view of the considerably larger number of potentially tryptic sensitive sites on the muscle isozyme, the resistance of CK-MM and susceptibility of CK-BB dimers to trypsin implies that differences in subunit tertiary structure are a factor in proteolysis of the homodimeric isozymes. Arginine kinase is rapidly degraded by trypsin, but is minimally affected by chymotrypsin. The finding that both a monomeric (arginine kinase) and dimeric (CK-BB) phosphagen kinase are highly susceptible to proteolysis by trypsin indicates that quaternary structure is not, in and of itself, an advantage in resistance to proteolysis. Since both arginine kinase and muscle creatine kinase are resistant to chymotryptic hydrolysis, it seems unlikely that in general, the increased packing density, which may result from dimerization can account for the stability of CK-MM towards trypsin.  相似文献   

3.
1. A monoclonal antibody (subclass immunoglobulin G1) has been raised against human brain-type creatine kinase (CK-BB). This antibody did not cross-react with either muscle-type creatine kinase (CK-MM) or heart-type creatine kinase (CK-MB). 2. The binding constant measured with native antibody was 6 X 10(8) M-1. In the presence of 2mM-dithiothreitol this constant was some 40-50-fold greater. 3. Partial reduction and alkylation showed that the increased binding was due to a direct effect on the antibody and was associated with concomitant cleavage of the heavy-heavy interchain disulphide bonds. The binding constant measured with Fab' fragments produced from reduced and alkylated antibody was similar to that shown by the native, unreduced antibody. 4. The molecular weight of the complex found in the absence of mercaptans was consistent with one antibody and one CK-BB molecule, whereas the molecular weight estimated with reduced and alkylated antibody was consistent with a complex of two antibodies and two CK-BB molecules. 5. It is proposed that mercaptans increase the flexibility of the hinge region of the antibody molecule, allowing the formation of a higher-order complex with increased avidity for the CK-BB dimer.  相似文献   

4.
Creatine kinase activity and its isoenzymatic profile in rat intestinal mucose during normal development have been studied. Creatine kinase enzymatic activity increased stepwise during fetal development and the first week of life. An isoenzymatic pattern of exclusively CK-BB types occurred in all segments of the digestive tract during the early fetal stage. The isoenzyme profile of creatine kinase in the esophagic tissue with advancing maturation of the fetus shifted in the same way as in adults, with preferential concentration of CK-MM. However, CK-BB continued to be the main isoenzyme in the rest of the digestive tract. Our results show that rats are particularly suitable for experimental studies of intestinal creatine kinase isoenzymes.  相似文献   

5.
Zusammenfassung In Gefrierschnitten lassen sich die Isoenzyme der Creatinkinase MM und BB durch spezifische Antikörper selektiv präzipitieren. Nach Sättigung der freien Antikörpervalenzen durch Zugabe von exogenem Antigen wird das im Schnitt fixierte Isoenzym durch eine histochemische Technik lokalisiert. Die Methode ermöglicht eine isoenzymspezifische Histochemie der Creatinkinase.Die Anwendung dieser Technik am menschlichen Gewebe führte zu folgenden Ergebnissen: CK-BB ließ sich sowohl in der Muskulatur als auch in der Mucosa des Colons nachweisen, während im Skelettmuskel zwischen cytoplasmatischer CK-MM und membrangebundenem Enzym im sarkoplasmatischen Reticulum und im Sarkolemm differenziert werdn konnte. In der Tonsille wurden CK-BB in epithelialem Gewebe, CK-MM in Muskelfasern lokalisiert. Das Isoenzymmuster von benachbarten einzelnen Schnitten wurde parallel immunologisch analysiert. Auf den Vorteil der Kombination von Immuntitration und Histchemie an gleichen Schnitten wird verwiesen.
Immunohistochemical localization of creatinkinase isoenzymes in human tissue
Summary The use of an immunohistochemical method permits the localization of creatine kinase isoenzymes MM and BB in tissue sections. Frozen sections are first incubated with the specific antiserum and secondly with the soluble antigen under investigation. The antibody fixed creatine kinase can then be visualized by the tetrazolium-salt linked histochemical reaction.In this way CK-BB was found in the smooth muscle and the mucosa of the human colon. In sections of skeletal muscle CK-MM was predominantly localized in the intermyofibrillar space. Membrane bound activity could be demonstrated in the sarcoplasmic reticulum and the surface membrane after elution of the cytoplasmic enzyme.In the human tonsilla CK-BB was localized in lymphatic and epithelial tissues, CK-MM in the muscle fibers. The isoenzyme patterns in single sections of tonsilla were in parallel determined by the immunotitration assay. The results indicate the usefulness of the combined application of histochemistry and immunotitration in serial tissue sections.


Unterstützt durch das Schwerpunktprogramm Enzymdiagnostik Pf 32/36 der Deutschen Forschungsgemeinschaft, 5300 Bonn-Bad Godesberg  相似文献   

6.
Ultrasensitive enzyme immunoassay method for the measurement of rat brain-type creatine kinase BB (CK-BB) was developed by use of purified antibodies specific to the B subunit of creatine kinase. The antibody immunoglobulin G was purified with immunoaffinity chromatography of the antiserum raised in rabbits by injecting the purified rat CK-BB. The assay system consisted of polystyrene balls with immobilized antibody F(ab')2 fragments and the same antibody Fab' fragments labeled with beta-D-galactosidase from Escherichia coli. The assay was specific to the B subunit of CK (CK-B), showing about 10% cross-reactivity with CK-MB, but it did not cross-react with CK-MM and neuron-specific gamma gamma enolase. The minimum detection limit of the assay was 0.1 pg or 1 amol CK-BB, being sufficiently sensitive for the measurement of CK-B contents in the isolated Purkinje cell bodies at the level of single cells. The average content of CK-B in a single Purkinje cell was 1.64 pg. The CK-B concentration in rat cerebellum (about 22 micrograms/mg protein) was about twofold higher than that (about 13 micrograms/mg protein) in the cerebrum. High levels (greater than 5 micrograms/mg protein) of CK-B were also found in the peripheral tissues such as gastrointestinal tract and urinary bladder, all of which are composed of smooth muscle. Immunohistochemical localization of CK-B antigens in the CNS revealed that the antigens is distributed not only in the neurons but also in the glial cells.  相似文献   

7.
The equilibrium unfolding of the major Physa acuta glutathione transferase isoenzyme (P. acuta GST(3)) has been performed using guanidinium chloride (GdmCl), urea, and acid denaturation to investigate the unfolding intermediates. Protein transitions were monitored by intrinsic fluorescence. The results indicate that unfolding of P. acuta GST(3) using GdmCl (0-3.0M) is a multistep process, i.e., three intermediates coexist in equilibrium. The first intermediate, a partially dissociated dimer, exists at low GdmCl concentration (approximately at 0.7M). At 1.2M GdmCl, a dimeric intermediate with a compact structure was observed. This intermediate undergoes dissociation into structural monomers at 1.75M of GdmCl. The monomeric intermediate started to be completely unfolding at higher GdmCl concentrations (>1.8M). Unfolding using urea (0-7.0M) and acid-induced structures as well as the fluorescence of 8-anilino-1-naphthalenesulfonate in the presence of different GdmCl concentrations confirmed that the unfolding is a multistep process. At concentrations of GdmCl or urea less than the midpoints or at the midpoint pH (pH 4.2-4.6), the unfolding transition is protein concentration independent and involved a change in the subunit tertiary structure yielding a partially active dimeric intermediate. The binding of glutathione to the enzyme active site stabilizes the native dimeric state.  相似文献   

8.
The use of an immunohistochemical method permits the localization of creatine kinase isoenzymes MM and BB in tissue sections. Frozen sections are first incubated with the specific antiserum and secondly with the soluble antigen under investigation. The antibody fixed creatine kinase can then be visualized by the tetrazolium-salt linked histochemical reaction. In this way CK-BB was found in the smooth muscle and the mucosa of the human colon. In sections of skeletal muscle CK-MM was predominantly localized in the intermyofibrillar space. Membrane bound activity could be demonstrated in the sarcoplasmic reticulum and the surface membrane after elution of the cytoplasmic enzyme. In the human tonsilla CK-BB was localized in lymphatic and epithelial tissues, CK-MM in the muscle fibers. The isoenzyme patterns in single sections of tonsilla were in parallel determined by the immunotitration assay. The results indicate the usefulness of the combined application of histochemistry and immunotitration in serial tissue sections.  相似文献   

9.
The unfolding of the recombinant regulatory subunit of cAMP-dependent protein kinase I was followed by monitoring the intrinsic protein fluorescence. Unfolding proceeds in at least two stages. First, the quenching of fluorescence due to cAMP binding is abolished at relatively low levels of urea (less than 2 M) and is observed as an increase in intensity at 340 nm. The high-affinity binding of cAMP is retained in 3 M urea even though the quenching is lost. The second stage of unfolding, presumably representing unfolding of the polypeptide chain, is seen as a shift in lambda max from 340 to 353 nm. The midpoint concentration, Cm, for this process is 5.0 M. Cyclic AMP binding activity is lost at a half-maximal urea concentration of 3.5 M and precedes the shift in lambda max. Unfolding of the protein in the presence of urea was fully reversible; furthermore, the presence of excess levels of cAMP stabilized the regulatory subunit. A free energy value (delta GDH2O) of 7.1 +/- 0.2 kcal/mol was calculated for the native form of the protein when denaturation was induced with either urea or guanidine hydrochloride. Iodide quenching of tryptophan fluorescence was used to elucidate the number of tryptophan residues accessible during various stages of the unfolding process. In the native cAMP-bound form of the regulatory subunit, only one of the three tryptophans in the regulatory subunit is quenched by iodide while more than two tryptophans can be quenched with iodide in the presence of 3 M urea.  相似文献   

10.
The cytosolic NADP+-dependent malic enzyme (c-NADP-ME) has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we demonstrate the differential protein stability between dimer and tetramer interface interactions of human c-NADP-ME. Our data clearly demonstrate that the protein stability of c-NADP-ME is affected predominantly by disruptions at the dimer interface rather than at the tetramer interface. First, during thermal stability experiments, the melting temperatures of the wild-type and tetramer interface mutants are 8–10°C higher than those of the dimer interface mutants. Second, during urea denaturation experiments, the thermodynamic parameters of the wild-type and tetramer interface mutants are almost identical. However, for the dimer interface mutants, the first transition of the urea unfolding curves shift towards a lower urea concentration, and the unfolding intermediate exist at a lower urea concentration. Third, for tetrameric WT c-NADP-ME, the enzyme is first dissociated from a tetramer to dimers before the 2 M urea treatment, and the dimers then dissociated into monomers before the 2.5 M urea treatment. With a dimeric tetramer interface mutant (H142A/D568A), the dimer completely dissociated into monomers after a 2.5 M urea treatment, while for a dimeric dimer interface mutant (H51A/D90A), the dimer completely dissociated into monomers after a 1.5 M urea treatment, indicating that the interactions of c-NADP-ME at the dimer interface are truly stronger than at the tetramer interface. Thus, this study provides a reasonable explanation for why malic enzymes need to assemble as a dimer of dimers.  相似文献   

11.
Cànaves JM  Leon DA  Taylor SS 《Biochemistry》2000,39(49):15022-15031
The regulatory (R) subunit of cAMP-dependent protein kinase (cAPK) is a multidomain protein with two tandem cAMP-binding domains, A and B. The importance of cAMP binding on the stability of the R subunit was probed by intrinsic fluorescence and circular dichroism (CD) in the presence and absence of urea. Several mutants were characterized. The site-specific mutants R(R209K) and R(R333K) had defects in cAMP-binding sites A and B, respectively. R(M329W) had an additional tryptophan in domain B. Delta(260-379)R lacked Trp260 and domain B. The most destabilizing mutation was R209K. Both CD and fluorescence experiments carried out in the presence of urea showed a decrease in cooperativity of the unfolding, which also occurred at lower urea concentrations. Unlike native R, R(R209K) was not stabilized by excess cAMP. Additionally, CD revealed significant alterations in the secondary structure of the R209K mutant. Therefore, Arg209 is important not only as a contact site for cAMP binding but also for the intrinsic structural stability of the full-length protein. Introducing the comparable mutation into domain B, R333K, had a smaller effect on the integrity and stability of domain A. Unfolding was still cooperative; the protein was stabilized by excess cAMP, but the unfolding curve was biphasic. The R(M329W) mutant behaved functionally like the native protein. The Delta(260-379)R deletion mutant was not significantly different from wild-type RIalpha in its stability. Consequently, domain B and the interaction between Trp260 and cAMP bound to site A are not critical requirements for the structural stability of the cAPK regulatory subunit.  相似文献   

12.
The human serum albumin is known to undergo N <==> F (neutral to fast moving) isomerization between pH 7 and 3.5. The N < ==> F isomerization involves unfolding and separation of domain III from rest of the molecule. The urea denaturation of N isomer of HSA shows two step three state transition with accumulation of an intermediate state around 4.8-5.2 M urea concentration. While urea induced unfolding transition of F isomer of HSA does not show the intermediate state observed during unfolding of N isomer. Therefore, it provides direct evidence that the formation of intermediate in the unfolding transition of HSA involves unfolding of domain III. Although urea induced unfolding of F isomer of HSA appears to be an one step process, but no coincidence between the equilibrium transitions monitored by tryptophanyl fluorescence, tyrosyl fluorescence, far-UV CD and near-UV CD spectroscopic techniques provides decisive evidence that unfolding of F isomer of HSA is not a two state process. An intermediate state that retained significant amount of secondary structure but no tertiary structure has been identified (around 4.4 M urea) in the unfolding pathway of F isomer. The emission of Trp-214 (located in domain II) and its mode of quenching by acrylamide and binding of chloroform indicate that unfolding of F isomer start from domain II (from 0.4 M urea). But at higher urea concentration (above 1.6 M) both the domain unfold simultaneously and the protein acquire random coil structure around 8.0 M urea. Further much higher KSV of NATA (17.2) than completely denatured F isomer (5.45) of HSA (8.0 M urea) suggests the existence of residual tertiary contacts within local regions in random coil conformation (probably around lone Trp-214).  相似文献   

13.
A Chen  S S Wong 《FEBS letters》1987,214(1):192-194
IgA-linked creatine kinase (CK, EC 2.7.3.2) is a macro CK type 1 isoenzyme that has an identical electrophoretic mobility to CK-MB. Its presence has the potential of causing misdiagnosis of myocardial infarction. Mixing anti-CK-B antiserum with the sample prior to electrophoresis did not unequivocally distinguish between the two isoenzymes. Similarly, anti-human IgG and IgM antibodies were also ineffective. However, the IgA-linked isoenzyme band was removed by anti-human IgA antiserum. While anti-CK-M antibodies did not affect the electrophoretic mobility of IgA-linked CK-BB, the antibody eliminated both the CK-MB and CK-MM bands. Thus, specific anti-IgA and anti-CK-M antibodies may be used to establish the presence of the myocardial isoenzyme.  相似文献   

14.
Growth, protein synthesis and expression of creatine kinase (CK) by embryonic chick myogenic cells are inhibited by vitamin D and certain of its metabolites. 25-OH cholecalciferol was most active in concentrations of 10−5–10−6 M, with cholecalciferol and ergocalciferol less active in that order. Ergosterol had no activity of this sort. Inhibition of CK was most marked on the 4th and 5th day of culture and was due to suppression of the appearance of CK-MM and MB. CK-BB was not affected and CK-MB was more affected than CK-BB. Skin fibroblasts by comparison were slightly stimulated in growth at 10−6 M and much less affected at 10−5 M than the myogenic cells. It is suggested that vitamin D has a direct effect upon the muscle cell, to cause a selective diminution in the production of certain polypeptides.  相似文献   

15.
Creatine kinase (ATP:creatine N-phosphotransferase, EC 2.7.3.2) is a good model for studying dissociation and reassociation during unfolding and refolding. This study compares self-reassociated CK dimers and CK dimers that contain hybrid dimers under proper conditions. Creatine kinase forms a monomer when denatured in 6 M urea for 1 h which will very quickly form a dimer when the denaturant is diluted under suitable conditions. After modification by DTNB, CK was denatured in 6 M urea to form a modified CK monomer. Dimerization of this modified subunit of CK occurred upon dilution into a suitable buffer containing DTT. Therefore, three different types of reassociated CK dimers including a hybrid dimer can be made from two different CK monomers in the proper conditions. The CK monomers are from a urea-denatured monomer of DTNB-modified CK and from an unmodified urea dissociated monomer. Equal enzyme concentration ratios of these two monomers were mixed in the presence of urea, then diluted into the proper buffer to form the three types of reassociated CK dimers including the hybrid dimer. Reassociated CK dimers including all three different types recover about 75% activity following a two-phase course (k 1 = 4.88 × 10–3 s–1, k 2 = 0.68 × 10–3 s–1). Intrinsic fluorescence spectra of the three different CK monomers which were dissociated in 6 M urea, dissociated in 6 M urea after DTNB modification, and a mixture of the first two dissociated enzymes were studied in the presence of the denaturant urea. The three monomers had different fluorescence intensities and emission maxima. The intrinsic fluorescence maximum intensity changes of the reassociated CK dimers were also studied. The refolding processes also follow biphasic kinetics (k 1 = 3.28 × 10–3 s–1, k 2 = 0.11 × 10–3 s –1) after dilution in the proper solutions. Tsou's method [Tsou (1988), Adv. Enzymol. Rel. Areas Mol. Biol. 61, 381–436] was also used to measure the kinetic reactivation rate constants for the different three types of reassociated CK dimers, with different kinetic reactivation rate constants observed for each type. CK dissociation and reassociation schemes are suggested based on the results.  相似文献   

16.
Noland BW  Dangott LJ  Baldwin TO 《Biochemistry》1999,38(49):16136-16145
Bacterial luciferase is a heterodimeric (alphabeta) enzyme composed of homologous subunits. When the Vibrio harveyi luxA gene is expressed in Escherichia coli, the alpha subunit accumulates to high levels. The alpha subunit has a well-defined near-UV circular dichroism spectrum and a higher intrinsic fluorescence than the heterodimer, demonstrating fluorescence quenching in the enzyme which is reduced in the free subunit [Sinclair, J. F., Waddle, J. J., Waddill, W. F., and Baldwin, T. O. (1993) Biochemistry 32, 5036-5044]. Analytical ultracentrifugation of the alpha subunit has revealed a reversible monomer to dimer equilibrium with a dissociation constant of 14.9 +/- 4.0 microM at 18 degrees C in 50 mM phosphate and 100 mM NaCl, pH 7.0. The alpha subunit unfolded and refolded reversibly in urea-containing buffers by a three-state mechanism. The first transition occurred over the range of 0-2 M urea with an associated free-energy change of 2.24 +/- 0.25 kcal/mol at 18 degrees C in 50 mM phosphate buffer, pH 7.0. The second, occurring between 2.5 and 3.5 M urea, comprised a cooperative transition with a free-energy change of 6.50 +/- 0.75 kcal/mol. The intermediate species, populated maximally at ca. 2 M urea, has defined near-UV circular dichroism spectral properties distinct from either the native or the denatured states. The intrinsic fluorescence of the intermediate suggested that, although the quantum yield had decreased, the tryptophanyl residues remained largely buried. The far-UV circular dichroism spectrum of the intermediate indicated that it had lost ca. 40% of its native secondary structure. N-Terminal sequencing of the products of limited proteolysis of the intermediate showed that the C-terminal region of the alpha subunit became protease labile over the urea concentration range at which the intermediate was maximally populated. These observations have led us to propose an unfolding model in which the first transition is the unfolding of a C-terminal subdomain and the second transition represents the unfolding of a more stable N-terminal subdomain. Comparison of the structural properties of the unfolding intermediate using spectroscopic probes and limited proteolysis of the alpha subunit with those of the alphabeta heterodimer suggested that the unfolding pathway of the alpha subunit is the same, whether it is in the form of the free subunit or in the heterodimer.  相似文献   

17.
The urea-induced unfolding of a missense mutant of the alpha subunit of tryptophan synthase from Escherichia coli involving the replacement of Gly by Glu at position 211 has been monitored by absorbance changes at 286 nm. Like the wild-type protein, the equilibrium unfolding curve demonstrates the presence of one or more stable intermediates. Comparison of these results with those from the wild-type alpha subunit [Matthews, C. R., & Crisanti, M. M. (1981) Biochemistry 20, 784] shows that the transition from the native conformation to the stable intermediates is displaced to higher urea concentration in the mutant alpha subunit; however, the transition from the intermediates to the unfolded form is unaffected. Kinetic studies show that the amino acid replacement slows the rate of unfolding by an order of magnitude. The effect on refolding rates is complex. One phase, previously assigned to proline isomerization [Crisanti, M. M., & Matthews, C. R. (1981) Biochemistry 20, 2700], is unaffected by the substitution. The rate of the second phase, which is urea dependent down to about 1 M urea, is slower than the corresponding phase in the wild-type protein by approximately a factor of 2. Below about 1 M urea, the rate of this phase becomes urea independent and identical with that of the wild-type alpha subunit. This change in urea dependence has been ascribed to a change in the nature of the rate-limiting step for this process from one involving folding to one involving proline isomerization. The results support the folding model for the alpha subunit proposed previously [Matthews, C. R., & Crisanti, M. M. (1981) Biochemistry 20, 784] and clarify the role of proline isomerization in limiting the rate of folding.  相似文献   

18.
The antigenic and physical properties of several representative invertebrate phosphagen kinases have been examined in order to further characterize the relationship between taxonomic assignment, quaternary protein structure and evolution of this class of enzymes. Antibodies against dimeric arginine kinase from the sea cucumber cross-reacted with dimeric arginine kinase purified from sea urchin eggs, but failed to react with extracts from any species known to contain monomeric arginine kinase. However, strong immunoreactivity was observed when antibodies against purified dimeric arginine kinase were reacted with pure creatine kinase from the human muscle (CK-MM) and brain (CK-BB) as well as extracts from several species known to contain dimeric creatine kinase. Of particular interest with regard to evolution of the phosphagen kinases, we confirm the presence of creatine kinase activity in the very primitive sponge Tethya aurnatium and detect a reaction with antibodies against dimeric, but not monomeric, arginine kinase. This observation is consistent with recent studies of phosphagen kinase evolution. Substrate utilization was very specific with creatine kinase using only creatine. Arginine kinase catalyzed phosphorylation of arginine but enzymes from several species could also phosphorylate canavanine. No activities were detected with d-arginine. Isoelectric points, evaluated for several pure arginine kinases suggest that generally the monomeric forms are more acidic than the dimeric proteins. Heat inactivation of arginine kinase in several species indicated a wide range of stabilities, which did not appear to be correlated with quaternary structure, but rather distinguished by the organism's environment. On the other hand, homodimeric arginine kinase proteins from species inhabiting disparate environments are sufficiently homologous to form a catalytically active hybrid.  相似文献   

19.
UDP-galactose 4-epimerase from yeast (Kluyveromyces fragilis) is a homodimer of total molecular mass 150 kDa having possibly one mole of NAD/dimer acting as a cofactor. The molecule could be dissociated and denatured by 8 M urea at pH 7.0 and could be functionally reconstituted after dilution with buffer having extraneous NAD. The unfolded and refolded equilibrium intermediates of the enzyme between 0-8 M urea have been characterized in terms of catalytic activity, NADH like characteristic coenzyme fluorescence, interaction with extrinsic fluorescence probe 1-anilino 8-naphthelene sulphonic acid (ANS), far UV circular dichroism spectra, fluorescence emission spectra of aromatic residues and subunit dissociation. While denaturation monitored by parameters associated with active site region e.g. inactivation and coenzyme fluorescence, were found to be cooperative having delta G between -8.8 to -4.4 kcals/mole, the overall denaturation process in terms of secondary and tertiary structure was however continuous without having a transition point. At 3 M urea a stable dimeric apoenzyme was formed having 65% of native secondary structure which was dissociated to monomer at 6 M urea with 12% of the said structure. The unfolding and refolding pathways involved identical structures except near the final stage of refolding where catalytic activity reappeared.  相似文献   

20.
The denaturation of the trp repressor from Escherichia coli has been studied by fluorescence, circular dichroism and proton magnetic resonance spectroscopy. The dependences of the fluorescence emission of the two tryptophan residues on the concentration of urea are not identical. The dependence of the quenching of tryptophan fluorescence by iodide as a function of urea concentration also rules out a two-state transition. The circular dichroism at 222 nm decreases in two phases as urea is added. Normalised curves for different residues observed by 1H NMR also do not coincide, and require the presence of at least one stable intermediate. Analysis of the dependence of the denaturation curves on the concentration of protein indicate that the first transition is a partial unfolding of the dimeric repressor, resulting in a loss of about 25% of the helical content. The second transition is the dissociation and unfolding of the partially unfolded dimer. At high concentrations of protein (500 microM) about 73% of the repressor exists as the intermediate in 4 M urea. The apparent dissociation constant is about 10(-4) M; the subunits are probably strongly stabilised by the subunit interaction. The native repressor is stable up to at least 70 degrees C, whereas the intermediate formed at 4 M urea can be denatured reversibly by heating (melting temperature approximately 60 degrees C, delta H approximately 230 kJ/mol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号