首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drake, John W. (University of Illinois, Urbana). Ultraviolet mutagenesis in bacteriophage T4. I. Irradiation of extracellular phage particles. J. Bacteriol. 91:1775-1780. 1966.-Ultraviolet (UV) irradiation of extracellular T4 phage particles induces about 2 x 10(-4)r mutations per lethal hit. The mutants largely escape detection unless the irradiated phages are plated with very soft overlay agar. Multiplicity reactivation is not a prerequisite for mutagenesis. A much higher frequency of base pair substitution-type mutants is induced than is found in the spontaneous background, but sign mutants are also induced. Nearly half of the mutants map into previously identified UV hot spots. The rII mutants induced extracellularly are very similar to those induced intracellularly. The mutants also appear to result from direct radiation effects upon the bacteriophage deoxyribonucleic acid.  相似文献   

2.
T1 DNA, gamma-irradiated in the phage particle or irradiated with ultraviolet light was checked for structural integrity by kinetics of melting and reannealing. gamma-Irradiated DNA differed in all thermokinetic properties by a factor of 3-4 from DNA degraded by mechanical or enzymatical treatments. Ultraviolet irradiation caused much smaller effects than gamma-irradiation. Considering the frequency of pyrimidine dimers in relation to the gamma-ray induced lesions, strong evidence can be derived, that in addition to single base damages, local denatured regions are produced by gamma-irradiation. Such regions, formed possibly by direct absorption of radiation energy in DNA, i.e. by primary ionizations, are associated with base lesions and are passed over during reannealing.  相似文献   

3.
Available evidence rules out the possibility that cyclobutane dimers are the major premutagenic lesions responsible for point mutations at sites of adjacent pyrimidine residues in the experiment systems examined to date in sufficient detail, that is, UV-induced mutations in chromosome loci in E. coli and UV-induced mutations in the cI gene of phage lambda. However, it is likely that the major cytotoxic effects of UV irradiation can be attributed to the cyclobutane pyrimidine dimer, as these lesions occur at 10 times the frequency of other UV-induced photoproducts in the dose range of 0.1-100 J/m2. The evidence also suggests that cyclobutane pyrimidine dimers are the major lesions responsible for induction of the SOS response and that as such they play an important, though indirect role, in the formation of mutations in irradiated DNA. Cyclobutane dimers may also be the major lesions responsible for other types of UV-light-induced mutations such as deletions. None of the available evidence rules out (6-4) photoproducts as a major premutagenic lesion induced by UV irradiation using these experimental systems. On the contrary, the mutation spectrum induced both in the lacI gene and the cI gene of phage lambda is that predicted for mutations induced by (6-4) photoproducts. The observation that neither the premutagenic lesions nor the (6-4) photoproduct is subject to enzymatic photoreactivation also implies that the (6-4) photoproducts are premutagenic. As reviewed above, neither the photosensitization experiments nor the action spectrum of the (6-4) photoproducts rules out such a role. Might a lesion other than the (6-4) photoproduct be the major premutagenic lesion responsible for point mutations in these experimental systems? It cannot be ruled out that another as yet undefined minor photoproduct that occurs with the same sequence distribution specificity as that of the (6-4) photoproduct and that is also not subject to the reactivating treatments is more mutagenic than the (6-4) photoproduct itself. Candidates for such a lesion might include a photohydrate of the (6-4) photoproduct itself or as yet undefined photoproducts. However, we believe these alternative possibilities to be remote.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Sunlight is carcinogenic and mutagenic and its genotoxic effects are believed to be the result of UV light-induced lesions in DNA. These lesions include pyrimidine dimers and (6-4) photoproducts, but it is uncertain whether the pyrimidine modifications are the sole pre-mutagenic lesions induced by UV light. Previous studies indicate that some sunlight-induced mutations in the single-stranded DNA phage M13mp2 may not be caused by these photoproducts. In this work, purified single-stranded phage DNA was exposed to UVA, UVB and UVC and the induced mutations were analyzed. All 3 types of UV light increase the mutation frequency. The mutants were sequenced and the results suggest that UVA exposure may induce formation of a non-dipyrimidine lesion in DNA.  相似文献   

5.
D V Amla 《Mutation research》1979,59(2):147-155
Mutagenic actions of ultraviolet irradiation (UV), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and acriflavine (photodynamic) were tested in free and intracellular phage AS-1 infecting Anacystis nidulans IU625. Spontaneous and induced mutations with particular reference to host range (h) and minute plaque formation (m) were investigated. The spontaneous mutation frequencies varied from 10(-9) to 10(-8) and from 2 X 10(-5) to 2 X 10(-4) for h and m mutants respectively. UV was efficient in inducing h and m markers in free phage particles as well as intracellular phage; MNNG induced both markers in intracellular phage only, and acriflavine induced m mutants only in free as well as in infecting phages. UV-induced mutations in free phage were photo-reactivable by visible light. With all the mutagens used, maximal induction of both markers was observed with treatment of 2-h complexes.  相似文献   

6.
A stable phage-carrying strain of Nocardia erythropolis was isolated from an infection with the nocardiophage phiEC. Growth of the strain in phage-specific antiserum for 48 hr produced cured organisms at a frequency of about 0.5%. Spontaneous curing, determined by serial single-colony isolations, was less than 0.4%. The strain could not be infected by phage phiEC nor by a closely related phage, phiC, although the cells were able to adsorb these phages. In cell populations, a frequency of 2.5 x 10(-4) cells spontaneously induced. The growth rate of the strain was comparable to that of the uninfected wild-type N. erythropolis. Ultraviolet irradiation or treatment with mitomycin C induced the strain to produce larger numbers of phage. It was concluded that the isolated strain was lysogenic.  相似文献   

7.
Summary Ultraviolet mutagenesis of lambda phage to clear plaque formers is the same in the total phage population and in subpopulations of phage which have also mutated to gam - or at an amber codon. This is true for phage assayed in host cells in which Weigle mutagenesis has been either partially induced by low levels of ultraviolet irradiation, or fully induced by higher levels. If induction of Weigle mutagenesis were all-or-none, clear plaque formers in phage subpopulations selected for another mutation elsewhere would come mainly from induced cells; then the clear plaque mutation rate would always be that for fully induced host cells. Therefore, induction requires more than one lesion in host cell DNA.Although thymine starvation of cells induces synthesis of recA protein, it does not induce Weigle mutagenesis; in fact starvation inhibits induction of this process on subsequent ultraviolet irradiation of the cells.  相似文献   

8.
The in vivo mutagenic properties of 2-aminoimidazolone and 5-guanidino-4-nitroimidazole, two products of peroxynitrite oxidation of guanine, are reported. Two oligodeoxynucleotides of identical sequence, but containing either 2-aminoimidazolone or 5-guanidino-4-nitroimidazole at a specific site, were ligated into single-stranded M13mp7L2 bacteriophage genomes. Wild-type AB1157 Escherichia coli cells were transformed with the site-specific 2-aminoimidazolone- and 5-guanidino-4-nitroimidazole-containing genomes, and analysis of the resulting progeny phage allowed determination of the in vivo bypass efficiencies and mutational signatures of the DNA lesions. 2-Aminoimidazolone was efficiently bypassed and 91% mutagenic, producing almost exclusively G to C transversion mutations. In contrast, 5-guanidino-4-nitroimidazole was a strong block to replication and 50% mutagenic, generating G to A, G to T, and to a lesser extent, G to C mutations. The G to A mutation elicited by 5-guanidino-4-nitroimidazole implicates this lesion as a novel source of peroxynitrite-induced transition mutations in vivo. For comparison, the error-prone bypass DNA polymerases were overexpressed in the cells by irradiation with UV light (SOS induction) prior to transformation. SOS induction caused little change in the efficiency of DNA polymerase bypass of 2-aminoimidazolone; however, bypass of 5-guanidino-4-nitroimidazole increased nearly 10-fold. Importantly, the mutation frequencies of both lesions decreased during replication in SOS-induced cells. These data suggest that 2-aminoimidazolone and 5-guanidino-4-nitroimidazole in DNA are substrates for one or more of the SOS-induced Y-family DNA polymerases and demonstrate that 2-aminoimidazolone and 5-guanidino-4-nitroimidazole are potent sources of mutations in vivo.  相似文献   

9.
B Tudek  S Boiteux    J Laval 《Nucleic acids research》1992,20(12):3079-3084
Guanine residues methylated at the N-7 position (7-MeGua) are susceptible to cleavage of the imidazole ring yielding 2,6-diamino-4-hydroxy-5N-methyl-formamidopyrimidine (Fapy-7-MeGua). The presence of Fapy-7-MeGua in DNA template causes stops in DNA synthesis in vitro by E. coli DNA polymerase I. The biological consequences of Fapy-7-MeGua lesions for survival and mutagenesis were investigated using single-stranded M13mp18 phage DNA. Fapy-7-MeGua lesions were generated in vitro in phage DNA by dimethylsulfate (DMS) methylation and subsequent ring opening of 7-MeGua by treatment with NaOH (DMS-base). The presence of Fapy-7-MeGua residues in M13 phage DNA correlated with a significant decrease in transfection efficiency and an increase in mutation frequency in the lacZ gene, when transfected into SOS-induced JM105 E.coli cells. Sequencing analysis revealed unexpectedly, that mutation rate at guanine sites was only slightly increased, suggesting that Fapy-7-MeGua was not responsible for the overall increase in the mutagenic frequency of DMS-base treated DNA. In contrast, mutation frequency at adenine sites yielding A----G transitions was the most frequent event, 60-fold increased over DMS induced mutations. These results show that treatment with alkali of methylated single-stranded DNA generates a mutagenic adenine derivative, which mispairs with cytosine in SOS induced bacteria. The results also imply that the Fapy-7-MeGua in E. coli cells is primarily a lethal lesion.  相似文献   

10.
Oxidative damage in DNA. Lack of mutagenicity by thymine glycol lesions   总被引:10,自引:0,他引:10  
Thymine glycol (5,6-dihydroxy-5,6-dihydrothymine) is a base damage common to oxidative mutagens and the major stable radiolysis product of thymine in DNA. We assessed the mutagenic potential of thymine glycols in single-stranded bacteriophage DNA during transfection of Escherichia coli wild-type and umuC strains. cis-Thymine glycols were induced in DNA by reaction with the chemical oxidant, osmium tetroxide (OsO4); modification of thymines was quantitated by using anti-thymine glycol antibody. Inactivation of transfecting molecules showed that one lethal hit corresponded to 1.5 to 2.1 thymine glycols per phage DNA in normal cells, whereas conditions of W-reactivation (SOS induction) reversed 60 to 80% of inactivating events. Forward mutations in the lacI and lacZ' (alpha) genes of f1 and M13 hybrid phage DNAs were induced in OsO4-treated DNA in a dose-dependent manner, in both wild-type and umuC cells. Sequence analysis of hybrid phage mutants revealed that mutations occurred preferentially at cytosine sites rather than thymine sites, indicating that thymine glycols were not the principal pre-mutagenic lesions in the single-stranded DNA. A mutagenic specificity for C----T transitions was confirmed by OsO4-induced reversion of mutant lac phage. Pathways for mutagenesis at derivatives of oxidized cytosine are discussed.  相似文献   

11.
In human skin cancers, more than 30 % of all mutations in the p53 gene are transitions at dipyrimidines within the sequence context CpG, i.e. 5'-TCG and 5'-CCG, found at several mutational hotspots. Since CpGs are methylated along the p53 gene, these mutations may be derived from solar UV-induced pyrimidine dimers forming at sequences that contain 5-methylcytosine. In Xorder to define the contribution of 5-methylcytosine to sunlight-induced mutations, we have used mouse fibroblasts containing the CpG-methylated lacI transgene as a mutational target. We sequenced 182 UVC (254 nm UV)-induced mutations and 170 mutations induced by a solar UV simulator, along with 75 mutations in untreated cells. Only a few of the mutations in untreated cells were transitions at dipyrimidines, but more than 95% of the UVC and solar irradiation-induced mutations were targeted to dipyrimidine sites, the majority being transitions. After UVC irradiation, 6% of the base substitutions were at dipyrimidines containing 5-methylcytosine and only 2.2% of all mutations were transitions within this sequence context. However, 24% of the solar light-induced mutations were at dipyrimidines that contain 5-methylcytosine and most of them were transitions. Two sunlight-induced mutational hotspots at methylated CpGs correlated with sequences that form the highest levels of cyclobutane pyrimidine dimers after irradiation with sunlight but not with UVC. The data indicate that dipyrimidines that contain 5-methylcytosine are preferential targets for sunlight-induced mutagenesis in cultured mammalian cells, thus explaining the large proportion of p53 mutations at such sites in skin tumors in vivo.  相似文献   

12.
In Escherichia coli K-12 strains infected with phage T4 which is defective in gene 30 [deoxyribonucleic acid (DNA) ligase] and in the rII gene (product unknown), near normal levels of DNA and viable phage were produced. Growth of such T4 ligase-rII double mutants was less efficient in E. coli B strains which show the "rapidlysis" phenotype of rII mutations. In pulse-chase experiments coupled with temperature shifts and with inhibition of DNA synthesis, it was observed that DNA synthesized by gene 30-defective phage is more susceptible to breakdown in vivo when the phage is carrying a wild-type rII gene. Breakdown was delayed or inhibited by continued DNA synthesis. Mutations of the rII gene decreased but did not completely abolish the breakdown. T4 ligase-rII double mutants had normal sensitivity to ultraviolet irradiation.  相似文献   

13.
Ultraviolet (254 nm) irradiation of the bacteriophage MS2 results in the decrease of the number of antigenic determinants exposed on the virion surface. The cross-section of the decrease, as measured by the number of anti-MS2 IgG molecules bound per virion, is 10(-16) mm2 per photon. The decrease of the phage-antibody binding proceeds after irradiation with a rate constant of about 5 x 10(-3) min-1. Since the antigenic determinants of the phage MS2 coat protein does not contain photoreactive amino acid residues, the irradiation-induced decrease of the phage antibody binding is determined, most probably, by the shielding of the antigenic determinants. Such shielding could be caused by rearrangement of coat protein molecules and/or of the capsid induced by photomodification of non-antigenic fragments of coat protein and/or of intraphage RNA.  相似文献   

14.
In E. coli K12 bacteria carrying plasmid pKM101, prophage lambda was induced at UV doses higher than in plasmid-less parental bacteria. UV-induced reactivation per se was less effective. Bacteria with pKM101 showed no alteration in their division cycle. Plasmid pKM101 coded for a constitutive error-prone repair different from the inducible error-prone repair called SOS repair. Plasmid pKM101 protected E. coli bacteria from UV damage but slightly sensitized them to X-ray lesions. Protection against UV damage was effective in mutant bacteria deficient in DNA excision-repair provided that the recA, lexA and uvrE genes were functional. Survival of phages lambda and S13 after UV irradiation was enhanced in bacteria carrying plasmid pKM101; phage lambda mutagenesis was also increased. Plasmid pKM101 repaired potentially lethal DNA lesions, although wild-type DNA sequences may not necessarily be restored; hence the mutations observed are the traces of the original DNA lesions.  相似文献   

15.
K. R. Tindall  J. Stein    F. Hutchinson 《Genetics》1988,118(4):551-560
Mutations in the cI (repressor) gene were induced by gamma-ray irradiation of lambda phage and of prophage, and 121 mutations were sequenced. Two-thirds of the mutations in irradiated phage assayed in recA host cells (no induction of the SOS response) were G:C to A:T transitions; it is hypothesized that these may arise during DNA replication from adenine mispairing with a cytosine product deaminated by irradiation. For irradiated phage assayed in host cells in which the SOS response had been induced, 85% of the mutations were base substitutions, and in 40 of the 41 base changes, a preexisting base pair had been replaced by an A:T pair; these might come from damaged bases acting as AP (apurinic or apyrimidinic) sites. The remaining mutations were 1 and 2 base deletions. In irradiated prophage, base change mutations involved the substitution of both A:T and of G:C pairs for the preexisting pairs; the substitution of G:C pairs shows that some base substitution mechanism acts on the cell genome but not on the phage. In the irradiated prophage, frameshifts and a significant number of gross rearrangements were also found.  相似文献   

16.
Ultraviolet irradiation of Escherichia coli polA(-) cells reduces their capacity to support the growth of T4 phage. There is no additional loss of capacity observed in pol tsA(-)recA(-) double mutants at the nonpermissive temperature. The reversion frequency of a T4 rII mutant after ultraviolet irradiation is not changed by the absence of host deoxyribonucleic acid polymerase I.  相似文献   

17.
R-factor 1818 (R-1818) had no effect on the efficiency of plating of ligase-deficient phage T4 mutants on strains of Escherichia coli containing excess, normal, or defective ligase. However, if the R(+) bacterial strain that overproduced ligase was first starved of thymine, its ability to propagate ligase-deficient phage was reduced by as much as fivefold compared with the burst size on the thymine-starved R(-) strain. In contrast, it was found that after ultraviolet irradiation of the host the phage burst size was higher on the R(+) ligase overproducing strain than the R(-) derivative. The maximal level of R-factor elimination produced by thymine starvation was inversely related to the ligase level of the host. Ultraviolet irradiation did not cure the R factor from strains containing wild-type levels of ligase, but did cause elimination from strains with excess or defective ligase. The results suggest that R-1818 codes for a nuclease that is induced by thymine starvation and which, possibly in conjunction with host-mediated nucleases, is responsible for its elimination under these conditions.  相似文献   

18.
The isolation and characterization of streptozotocin (STZ)-induced mutations in the phage P22 mnt repressor gene is described. Cells carrying the plasmid-borne mnt gene were exposed to STZ to give 10-20 percent survival and at least an eleven-fold increase in mutation frequency. DNA sequence analysis showed that 50 of 51 STZ-induced mutations were GC to AT transitions, and one was an AT to GC transition. We have also compared the STZ mutational spectrum to that for N-methyl-N'-nitro-N-nitroso-guanidine (MNNG). There are sites in the mnt gene which are mutated only by STZ; only by MNNG, or by both agents. Sites at which only STZ induced GC to AT transition mutations occur were in sequences that are pyrimidine rich 5' to the mutated site and purine rich 3' to the mutated site. Induction of mutations by both STZ and MNNG should be considered to maximize the number of mutable sites.  相似文献   

19.
Ultraviolet-Sensitive Mutator Strain of Escherichia coli K-12   总被引:30,自引:20,他引:10       下载免费PDF全文
An ultraviolet (UV)-sensitive mutator gene, mutU, was identified in Escherichia coli K-12. The mutation mutU4 is very close to uvrD, between metE and ilv, on the E. coli chromosome. It was recessive as a mutator and as a UV-sensitive mutation. The frequency of reversion of trpA46 on an F episome was increased by mutU4 on the chromosome. The mutator gene did not increase mutation frequencies in virulent phages or in lytically grown phage lambda. The mutU4 mutation predominantly induced transitional base changes. Mutator strains were normal for recombination and host-cell reactivation of UV-irradiated phage T1. They were normally resistant to methyl methanesulfonate and were slightly more sensitive to gamma irradiation than Mut(+) strains. UV irradiation induced mutations in a mutU4 strain, and phage lambda was UV-inducible. Double mutants containing mutU4 and recA, B, or C were extremely sensitive to UV irradiation; a mutU4 uvrA6 double mutant was only slightly more sensitive than a uvrA6 strain. The mutU4 uvrA6 and mutU4 recA, B, or C double mutants had mutation rates similar to that of a mutU4 strain. Two UV-sensitive mutators, mut-9 and mut-10, isolated by Liberfarb and Bryson in E. coli B/UV, were found to be co-transducible with ilv in the same general region as mutU4.  相似文献   

20.
Shiga toxin (Stx)-producing Escherichia coli (STEC), an important cause of hemolytic uremic syndrome, was completely killed by (60)Co irradiation at 1 x l0(3) gray (1 kGy) or higher. However, a low dose of irradiation (0.1-0.3 kGy) markedly induced Stx phage from STEC. Stx production was observed in parallel to the phage induction. Inactivation of Stx phage required a higher irradiation dose than that for bacterial killing. Regarding Stx, cytotoxicity was susceptible to irradiation, but cytokine induction activity was more resistant than Stx phage. The findings suggest that (1). although (60)Co irradiation is an effective means to kill the bacteria, it does induce Stx phage at a lower irradiation dose, with a risk of Stx phage transfer and emergence of new Stx-producing strains, and (2). irradiation differentially inactivates some activities of Stx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号