首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Combined histochemical and biochemical single-fibre analyses [Staron & Pette (1987) Biochem. J. 243, 687-693], were used to investigate the rabbit tibialis-anterior fibre population. 2. This muscle is composed of four histochemically defined fibre types (I, IIC, IIA and IIB). 3. Type I fibres contain slow myosin light chains LC1s and LC2 and the slow myosin heavy chain HCI, and types IIA and IIB contain the fast myosin light chains LC1f, LC2f and LC3f and the fast heavy chains HCIIa and HCIIb respectively. 4. A small fraction of fibres (IIAB), histochemically intermediate between types IIA and IIB, contain the fast light myosin chains but display a coexistence of HCIIa and HCIIb. 5. Similarly to the soleus muscle, C fibres in the tibialis anterior muscle contain both fast and slow myosin light chains and heavy chains. The IIC fibres show a predominance of the fast forms and the IC fibres (histochemically intermediate between types I and IIC) a predominance of the slow forms. 6. A total of 60 theoretical isomyosins can be derived from these findings on the distribution of fast and slow myosin light and heavy chains in the fibres of rabbit tibialis anterior muscle.  相似文献   

2.
Using the polarization microfluorimetry method, it was demonstrated that the increase in the degree of phosphorylation of myosin light chains (LC2) in extended single glycerinated fibers from rabbit psoas muscle changes the anisotropy of polarized fluorescence both tryptophan residue in the rod parts of the myosin molecule and the fluorescent label-N (iodoacetyl-aminoethyl)-5-naphthylamine-1-sulfonate (1,5-IAEDANS) bound to the SH1-group in myosin molecule heads. The changes in fluorescence anisotropy during LC2 phosphorylation were observed, when the measurements were performed only in the presence of 5 mM MgCl2. It was suggested that in the presence of MgCl2 the phosphorylation of LC2 associated with myosin heads changes their orientation and causes conformational shifts in the myosin filament core.  相似文献   

3.
The effect of myosin LC2 modifications (phosphorylation or selective proteolytic removal of a seven-residue N-terminal peptide) and partial or complete removal of the whole LC2 was studied under various conditions. (1) Actin binding in the absence of ATP is not influenced by the nature of the myosin species (phosphorylated, dephosphorylated or devoid of LC2). (2) A 50% inhibition of K+/EDTA-ATPase was obtained with actin concentrations hardly different when phosphorylated and dephosphorylated myosins were compared (of the order of 5 microM), whereas both myosin devoid of LC2 and myosin in which the LC2 N-terminal peptide has been removed required significantly higher concentrations of actin (13.0 +/- 2 and 12.0 +/- 2.0 microM, respectively). (3) Dissociation of the actomyosin complex at high ionic strength with nucleotides is not influenced by phosphorylation. (4) Actin activation of Mg2+-ATPase is enhanced when LC2 is phosphorylated; no activation enhancement is observed with myosin devoid of LC2. (5) Translational diffusion coefficient measurements of myosin in high-ionic-strength solutions indicate a tendency for LC2-deprived myosin to form autoassociation oligomers. It thus appears that a structural modification (partial cleavage or removal of LC2) induces important structural changes in myosin, pointing to a role for LC2 in the intrinsic conformation of the molecule and its interaction potentialities. Effects of LC2 removal at high ionic strength are best explained by interactions bearing no relationship to physiological functions. A physiologically significant effect of LC2 phosphorylation requires a minimum degree of organization (actomyosin complex) to be expressed in which LC2 could play the role of a return-spring in the cross-bridge mechanism.  相似文献   

4.
In the present study we tested the hypothesis that phosphorylation of the 20,000-dalton light chain subunit of smooth muscle myosin (LC20) by the calcium-activated and phospholipid-dependent protein kinase C regulates contraction of chemically-permeabilized (glycerinated) porcine carotid artery smooth muscle. Purified protein kinase C and oleic acid were used to phosphorylate LC20 in glycerinated muscles in the presence of a CaEGTA/EGTA buffer system (pCa 8) to prevent activation of myosin light chain kinase. Phosphorylation of the light chain to 1.3 mol of PO4/mol of LC20 did not stimulate contraction. Tryptic digests of glycerinated carotid artery LC20 contained two major phosphopeptides which contained phosphoserine but not phosphothreonine. Incubation of glycerinated muscles with calcium (20 microM) and calmodulin (10 microM) resulted in contraction and LC20 phosphorylation to 1.1 mol of PO4/mol of LC20; tryptic digests of LC20 from these muscles contained a single phosphopeptide which could be distinguished by phosphopeptide mapping from the two phosphopeptides derived from muscles phosphorylated with protein kinase C. Further phosphorylation of Ca2+/calmodulin-activated muscles to 2.0 mol of PO4/mol of LC20, by incubation with protein kinase C, had no effect on either the level of isometric force or the lightly-loaded shortening velocity (after-load = 0.1 peak active force); removal of Ca2+ and calmodulin, but not protein kinase C and oleic acid, resulted in normal relaxation in spite of maintained phosphorylation to 1.2 mol of PO4/mol of LC20. Comparison of LC20 phosphopeptide maps from glycerinated muscles incubated with protein kinase C plus Ca2+/calmodulin (2.0 mol of PO4/mol of LC20) to maps from intact muscles stimulated with 10(-6) M phorbol 12,13-dibutyrate (0.05 mol of PO4/mol of LC20) showed that the same three phosphopeptides were present in both the intact and glycerinated muscles. These findings show that phosphorylation of LC20 by protein kinase C in glycerinated muscles to levels at least 40 times higher than those present during contraction of intact, phorbol ester-stimulated muscles does not activate contraction nor does it significantly modify the contraction of smooth muscle which occurs in response to the Ca2+/calmodulin-dependent phosphorylation of Ser19 by myosin light chain kinase.  相似文献   

5.
Four smooth muscle myosin heavy chain (SMMHC) isoforms are generated by alternative mRNA splicing of a single gene. Two of these isoforms differ by the presence [(+)insert] or absence [(-)insert] of a 7-amino acid insert in the motor domain. The rate of actin filament propulsion of the (+)insert SMMHC isoform, as measured in the in vitro motility assay, is twofold greater than that of the (-)insert isoform. We hypothesized that a greater expression of the (+)insert SMMHC isoform and greater regulatory light chain (LC(20)) phosphorylation contribute to airway hyperresponsiveness. We measured airway responsiveness to methacholine in Fischer hyperresponsive and Lewis normoresponsive rats and determined SMMHC isoform mRNA and protein expression, as well as essential light chain (LC(17)) isoforms, h-caldesmon, and alpha-actin protein expression in their tracheae. We also measured tracheal muscle strip contractility in response to methacholine and corresponding LC(20) phosphorylation. We found Fischer rats have more (+)insert mRNA (69.4 +/- 2.0%) (mean +/- SE) than Lewis rats (53.0 +/- 2.4%; P < 0.05) and a 44% greater content of (+)insert isoform relative to total myosin protein. No difference was found for LC(17) isoform, h-caldesmon, and alpha-actin expression. The contractility experiments revealed a greater isometric force for Fischer trachealis segments (4.2 +/- 0.8 mN) than Lewis (1.9 +/- 0.4 mN; P < 0.05) and greater LC(20) phosphorylation level in Fischer (55.1 +/- 6.4) than in Lewis (41.4 +/- 6.1; P < 0.05) rats. These results further support the contention that innate airway hyperresponsiveness is a multifactorial disorder in which increased expression of the fast (+)insert SMMHC isoform and greater activation of LC(20) lead to smooth muscle hypercontractility.  相似文献   

6.
Summary Antibodies against myosin of the fast long. dorsi and the slow soleus muscle of rabbits were induced in guinea pigs. With the aid of a new technique, the gel-electrophoresis-derived-enzyme-linked-immunosorbent assay (GEDELISA) it could be shown that they are directed against the heavy and the light chains of fast (M. long. dorsi) and slow (M. soleus) myosin. In the indirect immunofluorescence test each antiserum only stained one population of fibres in five different muscles tested. The single fibres were observed to react only with one of the two types of antisera. The following percentage of fibres showed a positive reaction with the anti-fast myosin serum: M. long. dorsi, 95%; M. psoas maior, 95%, M. psoas minor, 92%; M. tibialis ant., 90%; M. soleus, 15%.Abbreviations AB antibodies - ETPase adenosintriphosphatase - Anti-LdM antiserum against LdM - Anti-SoM antiserum against SoM - BSA bovine serum albumin - CPf contaminating protein in LdM - CPs contaminating protein in SoM - EDTA ethylene diamine tetra-acetic acid - ELISA enzyme-linked immunosorbent assay - FITC fluoresceinisothiocyanate - FM last myosin showing 3LC in PAGE - GEDELISA gel electrophoresis-derived enzyme-linked immunosorbent assay - HC heavy chains of myosin - LC light chains of myosin - LdM myosin preparation of longissimus dorsi muscle - MCF microcomplement fixation - PAGE polyacrylamide gel electrophoresis - PBS phosphate buffered saline (140 mM NaCl, 20 mM potassium-phosphate, pH 7.4) - SDS sodiumdodecylsulfate - SM slow myosin, showing two LC in PAGE - SoM myosin preparation of soleus muscle  相似文献   

7.
The aim of this study was to determine whether the effects of hypoxia on aortic contractility reflect a decrease in smooth muscle activation [phosphorylation of the 20-kDa myosin regulatory light chain (LC(20))], the capacity for myofibrillar ATP hydrolysis (mATPase activity), or both. Our results indicate that, in endothelium-denuded aortic rings from rats exposed to hypoxia for 48 h (inspired O(2) concentration = 10%), contractions to phenylephrine and potassium chloride (KCl) are impaired compared with rings from normoxic rats. The proportion of phosphorylated to total LC(20) during aortic contraction induced by 10(-5) M phenylephrine was reduced after hypoxia (51.4 +/- 5.4% in normoxic control rats vs. 32.5 +/- 4.7% in hypoxic rats, P < 0.01). Aortic mATPase activity was also decreased (maximum ATPase rate = 29.6 +/- 3.4 and 20.7 +/- 3.7 nmol. min(-1). mg protein(-1) in control and hypoxic rats, respectively, P < 0.05). Neither proliferation nor dedifferentiation of aortic smooth muscle was evident in this model; immunostaining for smooth muscle expression of the proliferating cell nuclear antigen was negative and smooth muscle-specific isoforms of myosin heavy chains, h-caldesmon, and calponin were increased, not decreased, after hypoxic exposure. Decreased aortic reactivity after hypoxia is associated with both impairment of smooth muscle activation and diminished capacity of the actomyosin complex, once activated, to hydrolyze ATP. These changes cannot be attributed to smooth muscle dedifferentiation or to reduced contractile protein expression.  相似文献   

8.
We hypothesized that increased myofibrillar type 1 protein phosphatase (PP1) catalytic activity contributes to impaired aortic smooth muscle contraction after hypoxia. Our results show that inhibition of PP1 activity with microcystin-LR (50 nmol/l) or okadaic acid (100 nmol/l) increased phenylephrine- and KCl-induced contraction to a greater extent in aortic rings from rats exposed to hypoxia (10% O(2)) for 48 h than in rings from normoxic animals. PP1 inhibition also restored the level of phosphorylation of the 20-kDa myosin light chain (LC(20)) during maximal phenylephrine-induced contraction to that observed in the normoxic control group. Myofibrillar PP1 activity was greater in aortas from rats exposed to hypoxia than in normoxic rats (P < 0.05). Levels of the protein myosin phosphatase-targeting subunit 1 (MYPT1) that mediates myofibrillar localization of PP1 activity were increased in aortas from hypoxic rats (193 +/- 28% of the normoxic control value, P < 0.05) and in human aortic smooth muscle cells after hypoxic (1% O(2)) incubation (182 +/- 18% of the normoxic control value, P < 0.05). Aortic levels of myosin light chain kinase were similar in normoxic and hypoxic groups. In conclusion, after hypoxia, increased MYPT1 protein and myofibrillar PP1 activity impair aortic vasoreactivity through enhanced dephosphorylation of LC(20).  相似文献   

9.
Isoelectric focusing of purified vascular smooth muscle myosin revealed two variants of the 17,000-dalton light chain subunits. The isoelectric points of the light chain variants were determined to be 4.13 (LC17a) and 4.19 (LC17b). Tryptic peptide maps of the two species of light chain generated by reverse-phase high performance liquid chromatography disclosed small but obvious differences in peptide composition while amino acid analyses of the variants were quite similar. Two-dimensional electrophoresis of extracts from various mammalian smooth muscles revealed tissue-specific differences in the relative content of LC17a and LC17b. Vascular (aorta, carotid, and pulmonary artery) muscles and tracheal smooth muscle contained both light chain variants while smooth muscle of the gastrointestinal tract (stomach and jejunum) contained LC17a only. The actin-activated Mg2+-ATPase activities of both phosphorylated and nonphosphorylated stomach (LC17b = 0) and aortic (LC17b = 40%) myosins were compared. In the presence of saturating tropomyosin, a 2-fold difference in Vmax was measured: phosphorylated, aortic, 0.119 +/- 0.009 versus stomach, 0.239 +/- 0.012 mumol of PO4 liberated/min/mg of myosin; nonphosphorylated, aortic, 0.065 +/- 0.004 versus stomach, 0.123 +/- 0.004 mumol of PO4 liberated/min/mg of myosin. In addition, the Vmax of myosin subfragment-1 ATPase from bovine aortic, pulmonary artery, and stomach myosins (LC17b contents, 40, 20, and 0%, respectively) was found to decrease in direct proportion to the LC17b content. Our results suggest that isoforms of the 17,000-dalton light chain subunits of mammalian smooth muscle myosin could play an important role in modulating actomyosin ATPase activity.  相似文献   

10.
It is now well-established that phosphorylation of the 20,000-dalton light chain of smooth muscle myosin (LC20) is a prerequisite for muscle contraction. However, the relationship between myosin dephosphorylation and muscle relaxation remains controversial. In the present study, we utilized a highly purified catalytic subunit of a type-2, skeletal muscle phosphoprotein phosphatase (protein phosphatase 2A) and a glycerinated smooth muscle preparation to determine if myosin dephosphorylation, in the presence of saturating calcium and calmodulin, would cause relaxation of contracted uterine smooth muscle. Addition of the phosphatase catalytic subunit (0.28 microM) to the muscle bath produced complete relaxation of the muscle. The phosphatase-induced relaxation could be reversed by adding to the muscle bath either purified, thiophosphorylated, chicken gizzard 20,000-dalton myosin light chains or purified, chicken gizzard myosin light chain kinase. Incubation of skinned muscles with adenosine 5'-O-(thiotriphosphate) prior to the addition of phosphatase resulted in the incorporation of 0.93 mol of PO4/mol of LC20 and prevented phosphatase-induced relaxation. Under all of the above conditions, changes in steady-state isometric force were associated with parallel changes in myosin light chain phosphorylation over a range of phosphorylation extending from 0.01 to 0.97 mol of PO4/mol of LC20. We found no evidence that dephosphorylation of contracted uterine smooth muscles, in the presence of calcium and calmodulin, could produce a latch-state where isometric force was maintained in the absence of myosin light chain phosphorylation. These results show that phosphorylation or dephosphorylation of the 20,000-dalton myosin light chain is adequate for the regulation of contraction or relaxation, respectively, in glycerinated uterine smooth muscle.  相似文献   

11.
Steady-state ATPase activities of cardiac myosin from thyroxine-treated rabbit hearts have been determined before and after removal of the 18-kDa light-chain subunit (LC2) of myosin. LC2 was selectively removed from myosin by treatment with a myofibrillar protease according to the method of Kuo and Bhan (Biochem. Biophys. Res. Commun. 92, 570-576 (1980) ). The effects of removal of LC2 on the enzymatic properties of thyrotoxic myosin were compared with the results obtained for cardiac myosin from normal rabbits by parallel studies. It has been found that removal of LC2 does not affect the Ca2+- and K+ (EDTA)-ATPase activities of these myosins. The actin-activated myosin Mg2+-ATPase activities of intact and LC2-deficient thyrotoxic myosin were 0.18 +/- 0.03 and 0.36 +/- 0.03 mumol Pi/mg per min, respectively, whereas the actin-activated myosin Mg2+-ATPase activities of intact and LC2-deficient normal myosin were 0.12 +/- 0.02 and 0.18 +/- 0.03 mumol Pi/mg per min, respectively. Thus, removal of LC2 increases the actin-activated myosin Mg2+-ATPase activity of thyrotoxic myosin by 100%, and the same activity is increased about 50% for normal myosin, indicating that the degree of potentiation of actin-activated myosin Mg2+-ATPase activity as a result of LC2 removal is 2-fold greater in thyrotoxic myosin than that obtained for normal myosin. These results suggest that LC2 does not influence the increased actomyosin ATPase activity of thyrotoxic myosin and that potentiation of actomyosin ATPase following LC2 removal may depend on the variations of the heavy-chain domain where LC2 interacts.  相似文献   

12.
Regulation of the actin-activated ATPase of aorta smooth muscle myosin   总被引:1,自引:0,他引:1  
Phosphorylation of the 20,000-Da light chains, LC20, of vertebrate smooth muscle myosins is thought to be the primary mechanism for regulating the actin-activated ATPase activities of these myosins and consequently smooth muscle contraction. While actin stimulates the MgATPase activities of phosphorylated smooth muscle myosins, it is generally believed that the MgATPase activities of the unphosphorylated myosins are not stimulated by actin. However, under conditions where both unphosphorylated (5% phosphorylated LC20) and phosphorylated calf aorta myosins are mostly filamentous, the maximum rate, Vmax, of the actin-activated ATPase of the unphosphorylated myosin is one-half that of the phosphorylated myosin. While LC20 phosphorylation causes only a modest increase in Vmax, in the presence of tropomyosin, this phosphorylation does cause up to a 10-fold decrease in Kapp, the actin concentration required to achieve 1/2 Vmax. In the presence of low concentrations of tropomyosin/actin, a linear relationship is obtained between the fraction of LC20 phosphorylated and stimulation of the actin-activated ATPase. The relatively high actin-activated ATPase activity of unphosphorylated aorta myosin suggests that other proteins may be involved in the regulation of smooth muscle contraction. In contrast to the results presented here for aorta myosin, it has been reported that actin does not activate the MgATPase activity of unphosphorylated gizzard myosin and that the actin-activated ATPase of gizzard myosin increases more slowly than LC20 phosphorylation.  相似文献   

13.
Twitch tension and maximal unloaded velocity of human knee extensor muscles were studied under conditions of low phosphate content of the phosphorylatable light chains (P-light chains) of myosin and elevated phosphate content, following a 10-s maximal voluntary isometric contraction (MVC). After the MVC, twitch tension was significantly potentiated, with greater potentiation observed at a shorter muscle length (p less than 0.05). The MVC was associated with at least a twofold increase in phosphate content of the fast (LC2F) and two slow (LC2S and LC2S') P-light chains, but this increase was unrelated to muscle length. No significant differences in knee extension velocity were observed between conditions where P-light chains had low or elevated phosphate content. Positive but nonsignificant correlations were noted between the extent of twitch potentiation and phosphate content of individual P-light chains as well as the percentage of type II muscle fibres in vastus lateralis muscle. No significant relationships were determined for myosin light chain kinase activity and either P-light chain phosphorylation or type II fibre percentage. These data suggest that, unlike other mammalian fast muscles, P-light chain phosphorylation of mixed human muscles is not strongly associated with altered contractile performance.  相似文献   

14.
The effect of phosphorylation of light chains-2 (LC2) of rabbit skeletal muscle myosin on the interaction of myosin minifilaments with F-actin as well as on the actin-stimulated Mg2+-ATPase of minifilaments was studied. It was shown that in the absence of KCl the degree of F-actin-induced stimulation of myosin minifilament Mg2+-ATPase with phosphorylated LC2 exceeds 2-4-fold that with unphosphorylated LC2. Phosphorylation of LC2 considerably increases the rate of actin-stimulated Mg2+-ATPase reaction of myosin minifilaments but exerts only a very weak influence on the affinity of minifilaments for F-actin. After addition of KCl the differences in the actin-stimulated Mg2+-ATPase activity disappear in a great degree; in the presence of 50 mM KCl they do not exceed 50%. It was assumed that the observed specific influence of LC2 phosphorylation on the kinetic parameters of actin-stimulated Mg2+-ATPase reaction of myosin minifilaments is due to unique properties of the minifilaments (e.g., their ability to ordered self-assembly as a result of interaction between the heads of myosin molecules) which reflect their structural peculiarities.  相似文献   

15.
Ritter O  Haase H  Morano I 《FEBS letters》1999,446(2-3):233-235
Skeletal muscle contraction of Limulus polyphemus, the horseshoe crab, seemed to be regulated in a dual manner, namely Ca2+ binding to the troponin complex as well phosphorylation of the myosin light chains (MLC) by a Ca2+/calmodulin-dependent myosin light chain kinase. We investigated muscle contraction in Limulus skinned fibers in the presence of Ca2+ and of Ca2+/calmodulin to find out which of the two mechanisms prevails in Limulus skeletal muscle contraction. Although skinned fibers revealed high basal MLC mono- and biphosphorylation levels (0.48 mol phosphate/mol 31 kDa MLC; 0.52 mol phosphate/mol 21 kDa MLC), the muscle fibers were fully relaxed at pCa 8. Upon C2+ or Ca2+/calmodulin activation, the fibers developed force (357+/-78.7 mN/mm2; 338+/-69.7 mN/mm2, respectively) while the MLC phosphorylation remained essentially unchanged. We conclude that Ca2+ activation is the dominant regulatory mechanism in Limulus skeletal muscle contraction.  相似文献   

16.
The use of isoelectric focusing as a technique for quantifying the stoichiometry of phosphorylation of the 20 kDa smooth muscle myosin light chain (LC20) was found to overestimate true levels of phosphorylation under certain conditions due to the occurrence of LC20 charge modification. Modification of unphosphorylated LC20 produced a band of 'pseudophosphorylated' LC20 which co-focused with phosphorylated LC20. LC20 modification was found to occur when samples were subjected to electrophoresis under nonreducing conditions in the presence of ammonium persulfate. The overestimation of LC20 phosphorylation due to pseudophosphorylation was examined for both purified myosin and extracts from contracting smooth muscle and found to be greatest at low levels of LC20 phosphorylation. A simple theoretical model was developed which accurately predicted the effects of charge modification on the measured level of phosphorylation. LC20 modification was shown to be completely eliminated by the inclusion of dithiothreitol in extraction buffers and the pre-electrophoresis of sodium thioglycolate into gels.  相似文献   

17.
The temporal relationships among increases in adenosine 3',5'-cyclic monophosphate (cAMP) levels, myosin dephosphorylation, and relaxation were investigated to clarify the mechanisms of airway muscle relaxation. Canine tracheal muscles isometrically contracted (82% of maximum force) with 10(-6) M methacholine were relaxed by adding either 4 x 10(-7) M atropine or 4 x 10(-5) M forskolin. Atropine had no effect on cAMP levels; myosin phosphorylation and force, however, decayed at the same rates and these two parameters returned to their basal pre-methacholine levels within 5 min. Forskolin treatment results in about a 10-fold increase in cAMP levels; myosin phosphorylation and force decayed simultaneously to their respective steady-state levels by 10 min but neither parameter returned to its pre-methacholine level. The addition of forskolin to muscles maximally contracted with 10(-4) M methacholine leads to about a 30-fold increase in cAMP levels. However, there are minimal decreases in myosin phosphorylation and force in these muscles. Thus myosin dephosphorylation appears to be essential for airway muscle relaxation, whereas an increase in cAMP in the absence of myosin dephosphorylation is insufficient to cause relaxation. Moreover, myosin dephosphorylation appears to be a common step in the cAMP-independent and cAMP-dependent mechanisms for airway muscle relaxation.  相似文献   

18.
Since the Ca2+-regulatory mechanism for actin-myosin interaction in smooth muscle involves phosphorylation of the 20,000-Da myosin light chains, it was hypothesized that such interaction should be influenced by myosin phosphatase. Accordingly, we studied the effects of an aortic myosin light-chain phosphatase on Ca1+-dependent actin-myosin interaction in detergent-skinned porcine carotid artery and bovine aortic native actomyosin. In skinned preparations, the aortic phosphatase (16 U/ml) markedly inhibited the rate of isometric contraction in low Ca2+ (6.8 X 10(-7) M) and responsiveness to Ca2+ (force attained with 6.8 X 10(-7) Ca2+/force attained with 1.6 X 10(-6) M Ca2+), whereas relaxation was accelerated. Ca2+-dependent actomyosin ATPase activity and phosphorylation of the light chains were significantly and progressively depressed in the presence of increasing concentrations of phosphatase (0.1-0.9 U/ml). The concentration of Ca2+ (1.1 X 10(-6) M) required for half-maximal activation of either ATPase activity or light-chain phosphorylation increased by 70% in the presence of 0.1 U phosphatase/ml. Neither the maximal rate of Ca2+-sensitive ATP hydrolysis (39 +/- 0.8 nmole/min/mg actomyosin) nor the extent of phosphorylation (0.68 +/- 0.05 mole PO4/mole light chain) was altered at greater than 5 X 10(-6) M Ca2+. ATPase activity was correlated to light-chain phosphorylation under diverse conditions including the presence or absence of 1 microM calmodulin, different concentrations of phosphatase (0-0.9 U/ml), and different concentrations of Ca2+ (10(-8) to 1.25 X 10(-5) M). However, significant phosphorylation was present (20-25% of maximum) in the absence of Ca2+-dependent ATPase activity and only 15% of the maximal rate of ATP hydrolysis was expressed until phosphorylation attained 50% of its maximal value. These findings are consistent with the ordered model of myosin phosphorylation suggested by A. Persechini and D. J. Hartshorne [Science (Washington, DC), 213:1383-285, 1961] (36). They also suggest that myosin phosphatase may participate in modulating actin-myosin interactions in vascular smooth muscle.  相似文献   

19.
The principal signal to activate smooth muscle contraction is phosphorylation of the regulatory light chains of myosin (LC(20)) at Ser(19) by Ca(2+)/calmodulin-dependent myosin light chain kinase. Inhibition of myosin light chain phosphatase leads to Ca(2+)-independent phosphorylation at both Ser(19) and Thr(18) by integrin-linked kinase and/or zipper-interacting protein kinase. The functional effects of phosphorylation at Thr(18) on steady-state isometric force and relaxation rate were investigated in Triton-skinned rat caudal arterial smooth muscle strips. Sequential phosphorylation at Ser(19) and Thr(18) was achieved by treatment with adenosine 5'-O-(3-thiotriphosphate) in the presence of Ca(2+), which induced stoichiometric thiophosphorylation at Ser(19), followed by microcystin (phosphatase inhibitor) in the absence of Ca(2+), which induced phosphorylation at Thr(18). Phosphorylation at Thr(18) had no effect on steady-state force induced by Ser(19) thiophosphorylation. However, phosphorylation of Ser(19) or both Ser(19) and Thr(18) to comparable stoichiometries (0.5 mol of P(i)/mol of LC(20)) and similar levels of isometric force revealed differences in the rates of dephosphorylation and relaxation following removal of the stimulus: t(½) values for dephosphorylation were 83.3 and 560 s, and for relaxation were 560 and 1293 s, for monophosphorylated (Ser(19)) and diphosphorylated LC(20), respectively. We conclude that phosphorylation at Thr(18) decreases the rates of LC(20) dephosphorylation and smooth muscle relaxation compared with LC(20) phosphorylated exclusively at Ser(19). These effects of LC(20) diphosphorylation, combined with increased Ser(19) phosphorylation (Ca(2+)-independent), may underlie the hypercontractility that is observed in response to certain physiological contractile stimuli, and under pathological conditions such as cerebral and coronary arterial vasospasm, intimal hyperplasia, and hypertension.  相似文献   

20.
It has been shown by polarization microfluorimetry that phosphorylation of myosin light chain 2, in stretched single glycerinated fibers of rabbit skeletal muscle, results in changes in polarized fluorescence anisotropy of both the tryptophan residues of myosin molecules and the fluorescent label, N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine, associated with the fast-reacting thiol group in myosin heads. These changes are also dependent on the presence or absence of Mg2+ in the medium: they are most pronounced in the presence of 5 mM MgCl2. It is assumed that both Mg2+ binding to myosin and phosphorylation of light chain 2 associated with myosin heads induce structural changes in myosin filaments of muscle fibres which are expressed as changes in the orientation of myosin heads and in the conformation of myosin rods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号