首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A fine structural study of the ventricular muscle of Venus mercenaria has revealed that it is an invertebrate smooth muscle. In the relaxed state induced by acetylcholine, both thick (350 Å) and thin (80 Å) myofilaments are observed. These are loosely distributed in bundles in the periphery of the mononucleated myocytes. The central core of the cell contains an ovoid nucleus, α-glycogen rosettes, round mitochondria and numerous smooth surfaced vesicles of the endoplasmic reticulum. After exposure to serotonin, all myofilaments are compacted in the peripheral cytoplasm and become oriented parallel to the longitudinal cellular axis. This produces contraction bands visible in phase contrast microscopy. Because these myofilaments attach to the cell membrane at sites of attachment plaques, contraction of the cell results in the serial evagination or blebbing of the cell surface. The above features are clearly demonstrable in this invertebrate smooth muscle and strongly suggest a sliding filament model as the contractile mechanism in this tissue. Moreover, the cell surface is thought to play an active and major role in that process.  相似文献   

2.
Treatment of rat ventricular cells with 10 mM EGTA makes the sarcolemma highly permeable to small ions and molecules without removing its restriction of the diffusion of larger molecules or inactivating all of its enzymatic functions. These hyperpermeable cardiac cells have been used to study the regulation of the range of concentration of Ca over which activation of the contractile proteins occurs (Ca sensitivity). The Ca sensitivity can varied from three- to sixfold without any significant alteration in the general shape of the relation between force and Ca concentrations. Although cyclic nucleotides in concentrations of 10(-9) to 10(-5) M do not influence Ca sensitivity, in the presence of a phosphodiesterase inhibitor, cGMP increases and cAMP decreases Ca sensitivity. Treatment of the hyperpermeable cells with a nonionic detergent raises Ca sensitivity as does removal of the phosphate donor by complete substitution of CTP for ATP. These data indicate that Ca sensitivity is probably modulated by a cAMP-dependent phosphorylation that decreases Ca sensitivity. The sarcolemma is required for this reaction to take place. The effect of this reaction is antagonized by a cGMP-dependent reaction occurring inside the cell. Studies involving the perfusion of the heart with and without epinephrine before the exposure to EGTA indicate that epinephrine can regulate this system of control of Ca sensitivity. The functional considerations of this regulatory system are discussed.  相似文献   

3.
Dense bodies and actin polarity in vertebrate smooth muscle   总被引:5,自引:6,他引:5       下载免费PDF全文
The arrangement of cytoplasmic dense bodies in vertebrate smooth muscle and their relationship to the thin filaments was studied in cells from rabbit vas deferens and portal vein which were made hyperpermeable (skinned) with saponin and incubated with myosin subfragment 1 (S-1). The dense bodies were obliquely oriented, elongated structures sometimes appearing as chains up to 1.5 microns in length; they were often continuous across the cell for 200 to 300 nm and were interconnected by an oblique network of 10-nm filaments. The arrowheads, formed by S-1 decoration of actins, which inserted into both the sides and ends of dense bodies, always pointed away from the dense body, similar to the polarity of the thin filaments at the Z- bands of skeletal muscle. These results show that the cytoplasmic dense bodies function as anchoring sites for the thin filaments and indicate that the thin filaments, thick filaments, and dense bodies constitute a contractile unit.  相似文献   

4.
The contractile system of rat cardiac muscle that has been made hyperpermeable by soaking the tissue in EGTA (McClellan and Winegrad. 1978. J. Gen. Physiol. 72:737-764) can be probed directly with Ca buffer from the bathing solution without significant interference from either sarcoplasmic reticulum or mitochondria on the Ca concentration. Changes in Ca-activated force are due therefore to changes in the properties of the contractile system itself and not to regulation of Ca concentration. The addition of cAMP, cGMP, and GTP, guanylyl imidodiphosphate (GMP-PNP), or epinephrine to the bath does not alter maximum Ca-activated force, but when these drugs are added with 1% nonionic detergent to the bath, contractility increases by as much as 180%. An inhibitor of phosphodiesterase must be present for the inotropic effect of cAMP but not cGMP, GTP, GMP-PNP, or epinephrine. The inotropic response to cAMP is independent of the Ca sensitivity of the contractile system, but guanine nucleotides enhance contractility only when Ca sensitivity is not high. The inotropic effect of epinephrine is inhibited to a large extent by cGMP but not by GMP-PNP. These data can be explained by a model in which contractility is enhanced by a cAMP-regulated phosphorylation that can be controlled through the beta-receptor adenylate cyclase complex in the sarcolemma. The regulation involves two reactions, one a phosphorylation and a second that occurs in the presence of detergent. Phosphorylation of neither the myosin light chain nor the inhibitory subunit of troponin appears to be involved in this mechanism for regulating contractility.  相似文献   

5.
6.
7.
The calcium activation of the ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity of cardiac actomyosin reconstituted from bovine cardiac myosin and a complex of actin-tropomyosin-troponin extracted from bovine cardiac muscle at 37 degrees C was studied and compared with similar proteins from rabbit fast skeletal muscle. The proteins of the actin complex were identified by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Half-maximal activation of the cardiac actomyosin was seen at a calcium concentration of 1.2 +/- 0.002 (S.E. of mean) muM. A hybridized reconstituted actomyosin made with cardiac myosin and the actin-tropomyosin-troponin complex extracted from rabbit skeletal muscle was also activated by calcium but the half-maximal value was shifted to 0.65 +/- 0.02 (S.E. of mean) muM Ca2+. Homologous rabbit skeletal actomyosin showed half-maximal activation at 0.90 +/- 0.01 (S.E. of mean) muM Ca2+ and the value for a hybridized actomyosin made with rabbit skeletal myosin and the actin-complex from cardiac muscle was found at 1.4 +/- 0.03 (S.E. of mean) muM Ca2+ concentration. Kinetic analysis of the Ca2+ activated ATPase activity of reconstituted bovine cardiac actomyosin indicated some degree of cooperativity with respect to calcium. Double reciprocal plots of reconstituted actomyosins made with bovine cardiac actin complex were curvilinear and significantly different than those of reconstituted actomyosins made with the rabbit fast skeletal actin complex. The Ca2+-dependent cooperativity was of a mixed type as determined from Hill plots for homologous reconstituted bovine cardiac and rabbit fast skeletal actomyosin. The results show that cooperative interactions in reconstituted actomyosins were greater when the actin-tropomyosin-troponin complex was derived from cardiac than skeletal muscle.  相似文献   

8.
Octopamine action on the contractile system of crustacean skeletal muscle   总被引:1,自引:0,他引:1  
1. In the opener muscle of walking legs of crayfish (Astacus leptodactylus) octopamine (OA) greatly enhances the contractions resulting from brief applications of L-glutamate or of elevated K-concentrations. Synephrine is as effective as OA. 2. In the case of potentiation of responses to high-K applications a presynaptic component of the OA action was excluded by first desensitising the muscle fibres to the action of the natural transmitter, using a high concentration (1 mM) of glutamate. 3. The Ca-antagonists Co, Ni and Mn (1 mM) reduced the effects of glutamate and of elevated K to about one-half. In preparations treated with OA, the same Ca-antagonists also depressed the potentiated contractural responses to glutamate and to elevated K, again to about one-half. 4. OA also enhanced contractions resulting from the application of caffeine. 5. With 5-hydroxytryptamine (5-HT) application, the same postsynaptic effects were obtained as described for OA, except that the 5-HT actions were much weaker. 6. With OA, maximal effects were obtained with concentrations of 5 x 10(-6)-10(-5) M; maximally effective concentrations of 5-HT were around 10(-5) M. 7. The lowest effective concentrations of OA were around 10(-8) M; those of 5-HT were around 10(-7) M. 8. In the same preparation, 5-HT is far more effective in enhancing transmitter release (presynaptic action) than OA, the lowest effective concentration being around 10(-11) M while no presynaptic effects of OA were seen at concentrations below 10(-8) M, in some cases even below 10(-5) M.  相似文献   

9.
10.
The muscle contractile apparatus has a highly ordered liquid crystalline structure. The molecular mechanism underlying the formation of this apparatus remains, however, to be elucidated. Selective removal and reconstitution of the components are useful means of examining this mechanism. In addition, this approach is a powerful technique for examining the structure and function of a specific component of the contractile system. In this study we have achieved the structural and functional reconstitution of thin filaments in the cardiac contractile apparatus. First, all thin filaments other than short fragments at the Z line were removed by treatment with gelsolin. Under these conditions no active tension could be generated. By incorporating exogenous actin into these thin filament-free fibers, actin filaments were reconstituted, and active tension, which was insensitive to Ca2+, was restored. The active tension after the reconstitution of thin filaments reached 135 +/- 64% of the original level. The augmentation of tension was attributable to the elongation of reconstituted filaments. As another possibility for augmented tension generation, we suggest the presence of an inhibitory system that was not reconstituted. In any case, the thin filaments of the cardiac contractile apparatus are considered to be assembled so as not to develop the highest degree of tension. Incorporation of the tropomyosin-troponin complex fully restored Ca2+ sensitivity without affecting maximum tension. The present results indicate that a muscle contractile apparatus with a higher order structure and function can be constructed by the self-assembly of constituent proteins.  相似文献   

11.
To study the organization of the contractile apparatus in smooth muscle and its behavior during shortening, the movement of dense bodies in contracting saponin skinned, isolated cells was analyzed from digital images collected at fixed time intervals. These cells were optically lucent so that punctate structures, identified immunocytochemically as dense bodies, were visible in them with the phase contrast microscope. Methods were adapted and developed to track the bodies and to study their relative motion. Analysis of their tracks or trajectories indicated that the bodies did not move passively as cells shortened and that nearby bodies often had similar patterns of motion. Analysis of the relative motion of the bodies indicated that some bodies were structurally linked to one another or constrained so that the distance between them remained relatively constant during contraction. Such bodies tended to fall into laterally oriented, semirigid groups found at approximately 6-microns intervals along the cell axis. Other dense bodies moved rapidly toward one another axially during contraction. Such bodies were often members of separate semirigid groups. This suggests that the semirigid groups of dense bodies in smooth muscle cells may provide a framework for the attachment of the contractile structures to the cytoskeleton and the cell surface and indicates that smooth muscle may be more well-ordered than previously thought. The methods described here for the analysis of the motion of intracellular structures should be directly applicable to the study of motion in other cell types.  相似文献   

12.
Ca(2+) signaling in striated muscle cells is critically dependent upon thin filament proteins tropomyosin (Tm) and troponin (Tn) to regulate mechanical output. Using in vitro measurements of contractility, we demonstrate that even in the absence of actin and Tm, human cardiac Tn (cTn) enhances heavy meromyosin MgATPase activity by up to 2.5-fold in solution. In addition, cTn without Tm significantly increases, or superactivates sliding speed of filamentous actin (F-actin) in skeletal motility assays by at least 12%, depending upon [cTn]. cTn alone enhances skeletal heavy meromyosin's MgATPase in a concentration-dependent manner and with sub-micromolar affinity. cTn-mediated increases in myosin ATPase may be the cause of superactivation of maximum Ca(2+)-activated regulated thin filament sliding speed in motility assays relative to unregulated skeletal F-actin. To specifically relate this classical superactivation to cardiac muscle, we demonstrate the same response using motility assays where only cardiac proteins were used, where regulated cardiac thin filament sliding speeds with cardiac myosin are >50% faster than unregulated cardiac F-actin. We additionally demonstrate that the COOH-terminal mobile domain of cTnI is not required for this interaction or functional enhancement of myosin activity. Our results provide strong evidence that the interaction between cTn and myosin is responsible for enhancement of cross-bridge kinetics when myosin binds in the vicinity of Tn on thin filaments. These data imply a novel and functionally significant molecular interaction that may provide new insights into Ca(2+) activation in cardiac muscle cells.  相似文献   

13.
The contractile system is a highly non-ideal solution. The activities of its components must be determined in order to achieve a meaningful representation of cross-bridge kinetics and of chemio-mechanical transduction. Osmotic techniques may help in this respect. A few examples are presented. Protein osmotic pressure influences cross-bridges by determining (1) their free energy minimum, (2) their stiffness and (3) their contractile force.  相似文献   

14.
15.
A computer controlled equipment is described for computer analysis of isometric contractions of cardiac muscle by different modes of excitation. Both the method and the programme are presented. The following parameters are analysed: half and full contraction time, half relaxation time, maximum force developed during contraction, maximum rate of force development. The same computer is simultaneously used for controlling the stimulation.  相似文献   

16.
17.
Remodeling of skeletal muscle in response to altered patterns of contractile activity is achieved, in part, by the regulated degradation of cellular proteins. The ubiquitin-proteasome system is a dominant pathway for protein degradation in eukaryotic cells. To test the role of this pathway in contraction-induced remodeling of skeletal muscle, we used a well-established model of continuous motor nerve stimulation to activate tibialis anterior (TA) muscles of New Zealand White rabbits for periods up to 28 days. Western blot analysis revealed marked and coordinated increases in protein levels of the 20S proteasome and two of its regulatory proteins, PA700 and PA28. mRNA of a representative proteasome subunit also increased coordinately in contracting muscles. Chronic contractile activity of TA also increased total proteasome activity in extracts, as measured by the hydrolysis of a proteasome-specific peptide substrate, and the total capacity of the ubiquitin-proteasome pathway, as measured by the ATP-dependent hydrolysis of an exogenous protein substrate. These results support the potential role of the ubiquitin-proteasome pathway of protein degradation in the contraction-induced remodeling of skeletal muscle.  相似文献   

18.
Strophanthin K and beta-acetyldigoxin in vitro in concentration of 10(-6) M in TAM sharply increased the force generated by isolated myocardial contractile protein system (MCPS), and normalized the work performed by the system. This was accompanied by increase of ATP internal energy release (enthalpy) intensity, while a portion of energy, dissipating into heat did not increase proportionally. The mechanical efficiency of contractile process was normalized due to beta-acetyldigoxin, and exceeded the normal level due to strophanthin K effect. Strophanthin K proved a positive effect on quantitative and qualitative economy of MCPS energy utilization, while beta-acetyldigoxin effected, on the whole, extensively.  相似文献   

19.
On the basis of some known properties of the contractile apparatus of muscle and, employing speculative premises, a mathematical model was formulated which makes it possible to express the relations between some macroscopic phenomena of muscle contraction and activities of idealized molecular generators of force quantitatively. With the exception of the sliding filament theory, which is generally accepted, no other published models have, as yet, been taken into consideration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号