首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
白条黄单胞菌((Xanthomonas albilineans (Ashby) Downson))是我国进境植物检疫性有害生物,其引起的甘蔗白条病是甘蔗上最重要的细菌病害。白条黄单胞菌产生一种高效的植物毒素/抗生素,称为白条素(Albicidin)。作为引起甘蔗白条病的致病因子,白条素通过抑制质体DNA回旋酶阻碍叶绿体分化,导致叶面出现典型的白色条纹症状,同时白条素的抗菌活性也赋予白条黄单胞菌在其定殖甘蔗过程中对抗其他细菌的竞争优势。此外,在纳摩尔浓度下,白条素对人类各种革兰氏阳性和革兰氏阴性病原细菌具有快速杀菌作用,使其成为具有潜在临床应用价值的抗菌药物。文中综述了该毒素的分子结构、传统提取方法、作用机制、生物合成基因及途径和化学合成方法及改良现状,以期为甘蔗白条病的防治及医用新型抗菌素的开发提供参考。  相似文献   

2.
The host-defense peptide ocellatin-3N (GIFDVLKNLAKGVITSLAS.NH2), first isolated from the Caribbean frog Leptodactylus nesiotus, inhibited growth of clinically relevant Gram-positive and Gram-negative bacteria as well as a strain of the major emerging yeast pathogen Candida parapsilosis. Increasing cationicity while maintaining amphipathicity by the substitution Asp4→Lys increased potency against the microorganisms by between 4- and 16-fold (MIC ≤3 μM) compared with the naturally occurring peptide. The substitution Ala18→Lys and the double substitution Asp4→Lys and Ala18→Lys had less effects on potency. The [D4K] analog also showed 2.5- to 4-fold greater cytotoxic potency against non-small-cell lung adenocarcinoma A549 cells, breast adenocarcinoma MDA-MB-231 cells, and colorectal adenocarcinoma HT-29 cells (LC50 values in the range of 12–20 μM) compared with ocellatin-3N but was less hemolytic to mouse erythrocytes. However, the peptide showed no selectivity for tumor-derived cells [LC50 = 20 μM for human umbilical vein endothelial cells (HUVECs)]. Ocellatin-3N and [D4K]ocellatin-3N stimulated the release of insulin from BRIN-BD11 clonal β-cells at concentrations ≥1 nM, and [A18K]ocellatin-3N, at concentrations ≥0.1 nM. No peptide stimulated the release of lactate dehydrogenase at concentrations up to 3 μM, indicating that plasma membrane integrity had been preserved. The three peptides produced an increase in intracellular [Ca2+] in BRIN-BD11 cells when incubated at a concentration of 1 μM. In view of its high insulinotropic potency and relatively low hemolytic activity, the [A18K] ocellatin analog may represent a template for the design of agents with therapeutic potential for the treatment of patients with type 2 diabetes.  相似文献   

3.
Leaf scald of sugarcane, caused by Xanthomonas albilineans, is thought to be spread mainly in infected cuttings and transmitted on infested cutting implements. Several observations made in Guadeloupe indicated that other means of spreading also occur. The dispersal of the pathogen outside sugarcane was investigated with plants inoculated by an antibiotic-resistant marked strain of X. albilineans and with plants naturally infested with wild strains of the pathogen. The bacteria were isolated in water droplets (rain or dew) on the surface of sugarcane leaves at dawn. It was also detected on the surface of dry leaves during the day by leaf imprinting onto a selective culture medium. The bacteria were much more frequently isolated from the surface of symptomatic leaves than from symptomless ones. Aerial dispersal of X. albilineans was investigated by placing Petri dishes containing selective culture medium between sugarcane plants but without direct contact with the leaves. The pathogen was isolated in four out of 270 dishes which were randomly set 3-14 h in a diseased field. These results indicated that the pathogen exuded from the leaves and then was spread by aerial means (rain, insects,…) or by leaf contact. The bacteria were also found in roots and rhizospheric soil of infested sugarcane stools suggesting that X. albilineans could be transmitted by root to root contact or by the soil. Finally, isolations of the pathogen in sugarcane inflorescences were positive. So, fuzz transmission may also occur.  相似文献   

4.
Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is a bacterial plant pathogen that is mainly spread by infected cuttings and contaminated harvesting tools. However, some strains of this pathogen are known to be spread by aerial means and are able to colonize the phyllosphere of sugarcane before entering the host plant and causing disease. The objective of this study was to identify the molecular factors involved in the survival or growth of X. albilineans on sugarcane leaves. We developed a bioassay to test for the attachment of X. albilineans on sugarcane leaves using tissue‐cultured plantlets grown in vitro. Six mutants of strain XaFL07‐1 affected in surface polysaccharide production completely lost their capacity to survive on the sugarcane leaf surface. These mutants produced more biofilm in vitro and accumulated more cellular poly‐β‐hydroxybutyrate than the wild‐type strain. A mutant affected in the production of small molecules (including potential biosurfactants) synthesized by non‐ribosomal peptide synthetases (NRPSs) attached to the sugarcane leaves as well as the wild‐type strain. Surprisingly, the attachment of bacteria on sugarcane leaves varied among mutants of the rpf gene cluster involved in bacterial quorum sensing. Therefore, quorum sensing may affect polysaccharide production, or both polysaccharides and quorum sensing may be involved in the survival or growth of X. albilineans on sugarcane leaves.  相似文献   

5.
Leaf scald of sugarcane, caused by Xanthomonas albilineans, is thought to be spread mainly in infected cuttings and transmitted on infested cutting implements. Several observations made in Guadeloupe indicated that other means of spreading also occur. The dispersal of the pathogen outside sugarcane was investigated with plants inoculated by an antibiotic-resistant marked strain of X. albilineans and with plants naturally infested with wild strains of the pathogen. The bacteria were isolated in water droplets (rain or dew) on the surface of sugarcane leaves at dawn. It was also detected on the surface of dry leaves during the day by leaf imprinting onto a selective culture medium. The bacteria were much more frequently isolated from the surface of symptomatic leaves than from symptomless ones. Aerial dispersal of X. albilineans was investigated by placing Petri dishes containing selective culture medium between sugarcane plants but without direct contact with the leaves. The pathogen was isolated in four out of 270 dishes which were randomly set 3–14 h in a diseased field. These results indicated that the pathogen exuded from the leaves and then was spread by aerial means (rain, insects, …) or by leaf contact. The bacteria were also found in roots and rhizospheric soil of infested sugarcane stools suggesting that X. albilineans could be transmitted by root to root contact or by the soil. Finally, isolations of the pathogen in sugarcane inflorescences were positive. So, fuzz transmission may also occur.  相似文献   

6.
PCR with BOX and ERIC primers was used to analyze DNA of Xanthomonas albilineans and other bacteria associated with sugarcane. Generated fingerprints permitted clear separation of X. albilineans from other bacteria and revealed variation within the species. Good agreement between fingerprint groups and geographic origin and serovars was observed. Received: 27 July 2000 / Accepted: 21 August 2000  相似文献   

7.
The serological and lysotypical properties of 28 strains of X. albilineans originating from different geographic zones were analysed. Using the indirect immunofluorescence technique with 3 anti X. albilineans immunsera, the existence of three serovars was shown. The isolation of lytic bacteriophages from the soil enabled us to classify the bacterial strains into 6 lysovars. A correspondance between serovars and lysovars was revealed. These results show a variability of the X. albilineans species, and enable an analysis of the structure of its populations to be proposed, especially that of Tropical Africa.  相似文献   

8.
9.
Erythrocytes and different strains of plant pathogenic bacteria agglutinated with aqueous and saline 1M NaCl extracts from Phaseolus vulgaris L. seeds, which showed similar gel electrophoretic patterns of proteins. Haemagglutinating activity in aqueous extracts was inhibited by some carbohydrates, especially N-acetyl-D-galactosamine, D-galactose and lactose. The agglutinin in this extract was purified by utilizing its ability to bind to Pseudomonas pisi cells followed by its removal from the bacteria by 0.3M galactose. Mitogenic activity of purified agglutinin was calculated as incorporation of 125I-iododesoxy-uridine into DNA of lymphocytes in vitro, which gave values between 25 and 50 μg/ml. The molecular weight of the subunits was found to be 31,500, estimated by mobility in SDS-PAGE. A solid phase competition-binding radioimmunoassay for bean agglutinin was developed in order to determine the affinity of this lectin in bean plants to phytopathogenic bacteria. The highest level of affinity was associated with the system formed by, Ps. pisi and lectin from fresh seeds.  相似文献   

10.
Summary Recently the use of band-selective excitation to obtain 1H 2D NMR spectra of membrane peptides and proteins in non-deuterated detergents has been demonstrated [Seigneuret, M. and Levy, D. (1995) J. Biomol. NMR, 5, 345–352]. A limitation of the method was the inability to obtain through-space correlation between aliphatic protons. Here, a 3D F3-band-selective NOESY-TOCSY experiment is described that allows such correlations to be observed in the presence of an excess of non-deuterated detergent. Application to the measurement of proximities between aliphatic protons of the membrane peptide mastoparan X solubilized in non-deuterated n-octylglucoside is presented. With this additional experiment, it is now possible to obtain the same amount of structural constraints on membrane peptides and protein in non-deuterated detergent as in deuterated detergent and therefore to perform complete structural studies.  相似文献   

11.
The aim of this work was to study the antimicrobial activity of essential oils obtained from Thymus vulgaris (thyme) and Origanum vulgare (oregano) on phytopathogenic Pseudomonas species isolated from soybean. Strains with characteristics of P. syringae were isolated from leaves of soybean plants with blight symptoms. Ten of these could be identified in Group Ia of LOPAT as P. syringae. Six of these were confirmed as P. syringae using 16S rRNA, indicating the presence of these phytopathogenic bacteria in east and central Argentina. All the phytopathogenic bacteria were re‐isolated and identified from the infected plants. MIC values for thyme were 11.5 and 5.7 mg·ml?1 on P. syringae strains, while oregano showed variability in the inhibitory activity. Both essential oils inhibited all P. syringae strains, with better inhibitory activity than the antibiotic streptomycin. The oils were not bactericidal for all pseudomonads. Both oils contained high carvacrol (29.5% and 19.7%, respectively) and low thymol (1.5%). Natural products obtained from aromatic plants represent potential sources of molecules with biological activity that could be used as new alternatives for the treatment of phytopathogenic bacteria infections.  相似文献   

12.
pVEC is a cell‐penetrating peptide derived from the murine vascular endothelial‐cadherin protein. To evaluate the potential of pVEC as antimicrobial peptide (AMP), we synthesized pVEC and its analogs with Trp and Arg/Lys substitution, and their antimicrobial and lipopolysaccharide (LPS)‐neutralizing activities were investigated. pVEC and its analogs displayed a potent antimicrobial activity (minimal inhibitory concentration: 4–16 μM) against Gram‐positive and Gram‐negative bacteria but no or less hemolytic activity (less than 10% hemolysis) even at a concentration of 200 μM. These peptides induced a near‐complete membrane depolarization (more than 80%) at 4 μM against Staphylococcus aureus and a significant dye leakage (35–70%) from bacterial membrane‐mimicking liposome at a concentration as low as 1 μM. The fluorescence profiles of pVEC and its analogs in dye leakage from liposome and membrane depolarization were similar to those of a frog‐derived AMP, magainin 2. These results suggest that pVEC and its analogs kill bacteria by forming a pore or ion channel in the cytoplasmic membrane. pVEC and its analogs significantly inhibited nitric oxide production or tumor necrosis factor‐α release in LPS‐stimulated mouse macrophage RAW264.7 cells at 10 to 50 μM, in which RAW264.7 were not damaged. Taken together, our results suggest that pVEC and its analogs with potent antimicrobial and LPS‐neutralizing activities can serve as AMPs for the treatment of microbial infection and sepsis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
P7, a peptide analogue derived from cell‐penetrating peptide ppTG20, possesses antibacterial and antitumor activities without significant hemolytic activity. In this study, we investigated the antifungal effect of P7 and its anti‐Candida acting mode in Candida albicans. P7 displayed antifungal activity against the reference C. albicans (MIC = 4 μM), Aspergilla niger (MIC = 32 μM), Aspergillus flavus (MIC = 8 μM), and Trichopyton rubrum (MIC = 16 μM). The effect of P7 on the C. albicans cell membrane was examined by investigating the calcein leakage from fungal membrane models made of egg yolk l ‐phosphatidylcholine/ergosterol (10 : 1, w/w) liposomes. P7 showed potent leakage effects against fungal liposomes similar to Melittin‐treated cells. C. albicans protoplast regeneration assay demonstrated that P7 interacted with the C. albicans plasma membrane. Flow cytometry of the plasma membrane potential and integrity of C. albicans showed that P7 caused 60.9 ± 1.8% depolarization of the membrane potential of intact C. albicans cells and caused 58.1 ± 3.2% C. albicans cell membrane damage. Confocal laser scanning microscopy demonstrated that part of FITC‐P7 accumulated in the cytoplasm. DNA retardation analysis was also performed, which showed that P7 interacted with C. albicans genomic DNA after penetrating the cell membrane, completely inhibiting the migration of genomic DNA above the weight ratio (peptide : DNA) of 6. Our results indicated that the plasma membrane was the primary target, and DNA was the secondary intracellular target of the mode of action of P7 against C. albicans. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
The in vitro cytotoxicity of the antimicrobial peptide P34 was evaluated in different eukaryotic cells. The food‐grade bacteriocin nisin was also analysed for comparison. Vero cells were treated with different concentrations (0.02–2.5 μg·ml?1) of antimicrobial peptide P34 and nisin. Cell viability and plasma membrane integrity were checked by MTT [3‐(4,5‐dimethylthiazole‐2‐yl)‐2,5‐diphenyltetrazolium bromide], NRU (Neutral Red dye uptake) and LDH (lactate dehydrogenase) assays. The EC50 values of the peptide P34 in MTT and NRU assays were 0.60 and 1.25 μg·ml?1 respectively, while values of nisin found were 0.50 and 1.04 μg·ml?1. In the LDH assay, the EC50 values were 0.65 and 0.62 μg·ml?1 for P34 and nisin, respectively. The peptide P34 revealed similar haemolytic activity on human erythrocytes (5.8%) when compared with nisin (4.9%). The effects on viability, motility and acrosomal exocytosis of human sperm were also evaluated. Nisin and P34 showed similar effects on sperm parameters. The evaluation of cytotoxicity of antimicrobial peptides is a critical step to guarantee their safe use.  相似文献   

15.
Grazing of fluorescent latex beads, bacteria, and various species of phytoplankton by Poterioochromonas malhamensis (Pringsheim) Peterfi (about 8.0 μm in diameter) was surveyed. The alga ingested fluorescent beads and various live or killed and nomnotile or motile organisms including bacteria, blue-green algae, green algae, diatoms, and chrysomonads. The size range of grazed prey was from 0.1 to 6.0 μm for latex beads and from 1.0 μm (bacteria) to about 21 μm (Carteria inverse) for organisms. As many as 17 latex beads (2.0 μm) or more than 10 Microcystis cells (5–6 μm) were ingested by a single P. malhamensis cell. Following such grazing, the cell increased in volume by up to about 30-fold. The range of cell volume of ingested prey was from 0.52 μm3 (bacteria) to about 3178 μm3(Carteria inversa). This study demonstrates for the first time that P. malhamensis is capable of grazing algae 2–3 times larger in diameter than its own cell and of grazing intact motile algae. Poterioochromonas malhamensis is an omnivorous grazer. Food vacuole formation and digestion processes were examined. The membrane that was derived from the plasma membrane and surrounded the prey disappeared sometime after ingestion. The food vacuole was then formed by successive fusion of numerous homogeneous vesicles accumulated around the prey. The prey was enclosed in a single membrane-bound food vacuole and then digested.  相似文献   

16.
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Summary This study evaluates the potential of Paenibacillus brasilensis strain PB177 to inhibit phytopathogenic fungi commonly causing maize diseases and to colonize maize plants. In vitro assays demonstrated antagonistic activity against the fungal pathogens, Fusarium moniliforme and Diplodia macrospora. The PB177 strain was tagged with the gfp gene, encoding the green fluorescent protein (GFP) and GFP-tagged bacteria were detected attached to maize roots by stereo- and confocal microscopy. The GFP-tagged bacteria were also used to treat maize seeds before challenging the seeds with two phytopathogenic fungi. The results demonstrated that the bacterial cells are mobilized to the maize roots in the presence of the fungal pathogens. The ability of P. brasilensis PB177 to inhibit fungal growth in vitro and its capability of colonization of maize roots in vivo suggest a potential application of this strain as a biological control agent. This is the first report on the successful introduction of the GFP marker gene into a P. brasilensis strain, enabling the direct observation of these promising plant growth promoting bacteria on maize roots in situ.  相似文献   

18.
Albicidin is a pathotoxin produced by Xanthomonas albilineans, a xylem-invading pathogen that causes leaf scald disease of sugarcane. Albicidin is synthesized by a nonribosomal pathway via modular polyketide synthase and nonribosomal peptide synthetase (NRPS) megasynthases, and NRPS adenylation (A) domains are responsible for the recognition and activation of specific amino acid substrates. DNA fragments (0.5 kb) encoding the regions responsible for the substrate specificities of six albicidin NRPS A domains from 16 strains of X. albilineans representing the known diversity of this pathogen were amplified and sequenced. Polymorphism analysis of these DNA fragments at different levels (DNA, protein, and NRPS signature) showed that these pathogenicity loci were highly conserved. The conservation of these loci most likely reflects purifying selective pressure, as revealed by a comparison with the variability of nucleotide and amino acid sequences of two housekeeping genes (atpD and efp) of X. albilineans. Nevertheless, the 16 strains of X. albilineans were differentiated into several groups by a phylogenetic analysis of the nucleotide sequences corresponding to the NRPS A domains. One of these groups was representative of the genetic diversity previously found within the pathogen by random fragment length polymorphism and amplified fragment length polymorphism analyses. This group, which differed by three single synonymous nucleotide mutations, contained only four strains of X. albilineans that were all involved in outbreaks of sugarcane leaf scald. The amount of albicidin produced in vitro in agar and liquid media varied among the 16 strains of X. albilineans. However, no relationship among the amount of albicidin produced in vitro and the pathotypes and genetic diversity of the pathogen was found. The NRPS loci contributing to the synthesis of the primary structure of albicidin apparently are not involved in the observed pathogenicity differences among strains of X. albilineans.  相似文献   

19.
The present study was designed to evaluate potential antibacterial activities of synthetic LFchimera against five plant pathogenic bacteria such as Ralstonia solanacearum, Erwinia amylovora, Xanthomonas campestris, Pseudomonas syringae and Pectobacterium carotovorum. The agar disc-diffusion method with different concentrations (0.2, 0.4, 0.6 and 0.8 μM) of peptide was used to study the antibacterial activity of LFchimera against bacteria. The Minimum Inhibitory Concentration (MIC) of the LFchimera peptide were tested using serial dilution method at concentration ranging from 0 to 10 μM. The Results from agar disc-diffusion method revealed that LFchimera was effective against all bacterial strain in a dose-dependent manner. LFchimera showed highest activity in 0.8 μM which was significant compared to the standard antibiotic. LFchimera pepetide showed low MIC values (4 μM) against all tested bacteria. LFchimera peptide was found to show antibacterial activity against important phytopathogenic bacteria and can improve the potential of an antimicrobial peptide in plant disease management.  相似文献   

20.
This study compares the effect of cyclic R-, W-rich peptides with variations in amino acid sequences and sizes from 5 to 12 residues upon Gram negative and Gram positive bacteria as well as outer membrane-deficient and LPS mutant Escherichia coli (E. coli) strains to analyze the structural determinants of peptide activity. Cyclo-RRRWFW (c-WFW) was the most active and E. coli-selective sequence and bactericidal at the minimal inhibitory concentration (MIC). Removal of the outer membrane distinctly reduced peptide activity and the complete smooth LPS was required for maximal activity. c-WFW efficiently permeabilised the outer membrane of E. coli and promoted outer membrane substrate transport. Isothermal titration calorimetric studies with lipid A-, rough-LPS (r-LPS)- and smooth-LPS (s-LPS)-doped POPC liposomes demonstrated the decisive role of O-antigen and outer core polysaccharides for peptide binding and partitioning. Peptide activity against the inner E. coli membrane (IM) was very low. Even at a peptide to lipid ratio of 8/1, c-WFW was not able to permeabilise a phosphatidylglycerol/phosphatidylethanolamine (POPG/POPE) bilayer. Low influx of propidium iodide (PI) into bacteria confirmed a low permeabilising ability of c-WFW against PE-rich membranes at the MIC. Whilst the peptide effect upon eukaryotic cells correlated with the amphipathicity and permeabilisation of neutral phosphatidylcholine bilayers, suggesting a membrane disturbing mode of action, membrane permeabilisation does not seem to be the dominating antimicrobial mechanism of c-WFW. Peptide interactions with the LPS sugar moieties certainly modulate the transport across the outer membrane and are the basis of the E. coli selectivity of this type of peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号