首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been shown that the rate of enzymatic saccharification of cellulosic materials including “pure” cellulose (Whatman CF?11 cellulose), newsprint, lignocellulose (prehydrolyzed to remove hemicelluloses), and wood can be substantially increased by simultaneous wet milling. An enhanced hydrolysis rate was sustained above that observed for ball milling: providing a more extensive saccharification. The cellulosic substrates were wet milled with a variety of grinding elements, such as sand, glass beads, and stainless-steel beads, agitated in a shaker bath. Simultaneous hydrolysis was achieved with a 2% substrate slurry in a 0.1M acetate buffer at 45°C and pH 5. The effectiveness of this process was dependent upon the lignified matrix of the cellulose microfibrils, the grinding elements, and the oscillation frequency of the shaker bath. Wet milling “pure” cellulose for 48 hr, with 3.5 mm glass beads and 200 oscillations/min (opm), yielded 1031 mg reducing sugar/g substrates (93% saccharification) as compared to 483 mg (44%) for the ball-milled sample and 253 mg (23%) for the unmilled material. With the lignified substrates stainless-steel beads (3.5 mm) were more effective than glass. For lignocellulose 529 mg sugar/g substrate (93% saccharification) could be obtained by wet milling with cellulase for 24 hr. This was about three times greater than that of the ball milled (169 mg, 30%) and 10 times greater than that of the unmilled (52 mg, 9%) substrates. The method was also effective for wood particles (60 mesh) giving 143 mg sugar/g wood (approximately 38% saccharification) in 48 hr, whereas the ball-milled sample gave only 79 mg (21%) and the unmlilled substrate 38 mg (10%). These observations can be explained on the basis of the current crystalline theory for the morphology of the cellulosic microfibrils. The advantage of wet milling and simultaneous hydrolysis apparently depends on a continuous generation of accessible sites and sustained rapid hydrolysis rate as the saccharification proceeds, where in the pretreated substrates the hydrolysis rate slow down as the active sites are reduced.  相似文献   

2.
A comparative study on the saccharification of pretreated rice straw was brought about by using cellulase enzyme produced by Aspergillus terreus ATCC 52430 and its mutant strain UNGI-40. The effect of enzyme and substrate concentrations on the saccharification rate at 24 and 48 were studied. A syrup with 7% sugar concentration was obtained with a 10% substrate concentration for the mutant case, whereas a syrup with 6.8% sugar concentration was obtained with 3.5 times concentrated enzyme from the wild strain. A high saccharification value was obtained with low substrate concentration; the higher the substrate concentration used, the lower the percent saccharification. The glucose content in the hydrolysate comprised 80-82% of total reducing sugars; the remainder was cellobiose and xylose together. The hydrolysate supported the growth of yeasts Candida utilis and Saccharomyces cerevisiae ATCC 52431. A biomass with a 48% protein content was obtained. The essential amino acid composition of yeast biomass was determined.  相似文献   

3.
Cellulase (CMCase) and xylanase enzyme production and saccharification of sugar cane bagasse were coupled into two stages and named enzyme production and sugar cane bagasse saccharification. The performance of Cellulomonas flavigena (Cf) PR‐22 cultured in a bubble column reactor (BCR) was compared to that in a stirred tank reactor (STR). Cells cultured in the BCR presented higher yields and productivity of both CMCase and xylanase activities than those grown in the STR configuration. A continuous culture with Cf PR‐22 was run in the BCR using 1% alkali‐pretreated sugar cane bagasse and mineral media, at dilution rates ranging from 0.04 to 0.22 1/h. The highest enzymatic productivity values were found at 0.08 1/h with 1846.4 ± 126.4 and 101.6 ± 5.6 U/L·h for xylanase and CMCase, respectively. Effluent from the BCR in steady state was transferred to an enzymatic reactor operated in fed‐batch mode with an initial load of 75 g of pretreated sugar cane bagasse; saccharification was then performed in an STR at 55°C and 300 rpm for 90 h. The constant addition of fresh enzyme as well as the increase in time of contact with the substrate increased the total soluble sugar concentration 83% compared to the value obtained in a batch enzymatic reactor. This advantageous strategy may be used for industrial enzyme pretreatment and saccharification of lignocellulosic wastes to be used in bioethanol and chemicals production from lignocellulose. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:321–326, 2016  相似文献   

4.
The study was focused on developing a continuous method to produce an alcohol mixture suitable to be used as a gasoline supplement. The immobilized column reactor with wood pulp fibers was successfully used for the continuous production of butanol and isopropanol using Clostridium beijerinckii DSM 6423. A sugar mixture (glucose, mannose, galactose, arabinose and xylose) representing lignocellulose hydrolysate was used as a substrate for the production of solvents. The effect of dilution rate on solvent production was studied during continuous operation. The maximum total solvent concentration of 11.99 g/l was obtained at a dilution rate of 0.16 h?1. The maximum solvent productivity (5.58 g/l h) was obtained at a dilution rate of 1.5 h?1. The maximum solvent yield of 0.45 g/g from sugar mixture was observed at 0.25 h?1. The system will be further used for the solvent production using wood hydrolysate as a substrate.  相似文献   

5.
A flocculating strain of Kluyveromyces marxianus was used for alcoholic fermentation in a continuous bioreactor working with zero residual concentration in effluent. Specific kinetic parameters were improved by increasing dilution rate, which is similar to results obtained with ultrafiltration systems. Specific biomass accumulation rate had always a value greater than 92.5% of specific biomass growth rate and was independent of the dilution rate. Productivity is shown to be 12.5 times greater than in conventional continuous operation and is directly proportional to dilution rate. Maximum biomass concentration also presents a linear relationship with dilution rate. The largest obtained biomass concentration is 8 times greater than in a conventional continuous fermentor.  相似文献   

6.
Continuous production of acetone, n-butanol, and ethanol (ABE) was carried out using immobilized cells of Clostridium acetobutylicum DSM 792 using glucose and sugar mixture as a substrate. Among various lignocellulosic materials screened as a support matrix, coconut fibers and wood pulp fibers were found to be promising in batch experiments. With a motive of promoting wood-based bio-refinery concept, wood pulp was used as a cell holding material. Glucose and sugar mixture (glucose, mannose, galactose, arabinose, and xylose) comparable to lignocellulose hydrolysate was used as a substrate for continuous production of ABE. We report the best solvent productivity among wild-type strains using column reactor. The maximum total solvent concentration of 14.32 g L−1 was obtained at a dilution rate of 0.22 h−1 with glucose as a substrate compared to 12.64 g L−1 at 0.5 h−1 dilution rate with sugar mixture. The maximum solvent productivity (13.66 g L−1 h−1) was obtained at a dilution rate of 1.9 h−1 with glucose as a substrate whereas solvent productivity (12.14 g L−1 h−1) was obtained at a dilution rate of 1.5 h−1 with sugar mixture. The immobilized column reactor with wood pulp can become an efficient technology to be integrated with existing pulp mills to convert them into wood-based bio-refineries.  相似文献   

7.
Using ball milled cellulose as the only carbon source Trichoderma viride was grown in a continuous flow culture at pH = 5.0 and T = 30°C. Steady-state values for cell protein, cellulose, and cellulase for different substrate concentrations (4–11 g/liter) and dilution rates (0.033–0.080 hr?1) were obtained. Under steady-state conditions, 50–75% of the cellulose was consumed indicating a critical dilution rate on 0.17 hr?1. Cellulase activity (U/ml) in the fermentation broth increased slightly with increasing substrate concentration and decreased with increasing dilution rate, while the specific cellulase productivity (U/mg cell protein·hr) was fairly independent of the dilution rate, with a maximum around D = 0.05 hr?1. Following step changes in substrate concentration and dilution rate, new steady-state values were reached after three to five residence times (cell protein and cellulose) and four to six residence times (celullase activity).  相似文献   

8.
Candida utilis was grown on a pineapple cannery effluent as the sole carbon and energy source in a chemostat at dilution rates between 0.10 and 0.62 h(-1) to determine the growth kinetics. The principal sugars in the effluent were sucrose, glucose, and fructose. The cell yield coefficient on carbohydrate varied with dilution rate and a maximum value of 0.63 was observed at a dilution rate of 0.33 h(-1). The steady-state concentrations of carbohydrate, reducing sugar, and chemical oxygen demand (COD) appeared to follow Monod saturation kinetics with increasing dilution rate, although none of the measured parameters represented a pure substrate. The maximum specific growth rate and reducing sugar saturation constant were 0.64 h(-1) and 0.060 g/L, respectively. A maximum cell mass productivity of 2.3 g/L h was observed at a dilution rate of 0.51 h(-1). At this dilution rate, only 68% of the COD was removed. A 95% COD removal was attained at a dilution rate of 0.10 h(-1). Optimal yeast productivity and COD reduction occurred at a dilution rate of 0.33 h(-1).  相似文献   

9.
A saccharification of cellulosic material using culture filtrate from the stationary phase of a culture of Thermomonospora sp. produced primarily cellobiose up to levels inhibitory to further saccharification, while the use of whole broth resulted in the production of glucose as well. Glucose production was enhanced and continued throughout the saccharification (24–36 hr) by several additions of cellobiase activity in the form of culture solids. Using Solka-Floc as substrate, the “difference sugar” level (total soluble sugar minus glucose) rapidly rose to the same relatively stable concentration under various hydrolysis conditions, which was independent of the total sugar and glucose concentrations. A rapid hydrolusis rate was observed initially during saccharification, followed by a much slower rate of sugar production. Repeated centrifugation of the reaction mixture and replacement of the supernatant with fresh enzyme solution resulted each time in the reinitiation of a rapid hydrolysis rate. Saccharifications using A vicel microcrystalline cellulose, acid-swollen cellulose, and cotton as substrates were also studied. A modified method of making phosphoric-acid swollen cellulose is described. Saccharification of this substrate by culture filtrate and sequential additions of culture solids resulted in an inverse relationship between the attained glucose concentration and cellobiose-cellotriose concentrations.  相似文献   

10.
The study was targeted to saccharify foodwastes with the cellulolytic and amylolytic enzymes obtained from culture supernatant ofTrichoderma harzianum FJ1 and analyze the kinetics of the saccharification in order to enlarge the utilization in industrial application.T. harzianum FJ1 highly produced various cellulolytic (filter paperase 0.9, carboxymethyl cellulase 22.0, β-glucosidase 1.2, Avicelase 0.4, xylanase 30.8, as U/mL-supernatant) and amylolytic (α-amylase 5.6, β-amylase 3.1, glucoamylase 2.6, as U/mL-supernatant) enzymes. The 23–98 g/L of reducing sugars were obtained under various experimental conditions by changing FPase to between 0.2–0.6 U/mL and foodwastes between 5–20% (w/v), with fixed conditions at 50°C, pH 5.0, and 100 rpm for 24 h. As the enzymatic hydrolysis of foodwastes were performed in a heterogeneous solid-liquid reaction system, it was significantly influenced by enzyme and substrate concentrations used, where the pH and temperature were fixed at their experimental optima of 5.0 and 50°C, respectively. An empirical model was employed to simplify the kinetics of the saccharification reaction. The reducing sugars concentration (X, g/L) in the saccharification reaction was expressed by a power curve (X=K·t n) for the reaction time (t), where the coefficient,K andn, were related to functions of the enzymes concentrations (E) and foodwastes concentrations (S), as follow:K=10.894 Ln(E·S 2)-56.768,n=0.0608·(E/S)−0.2130. The kinetic developed to analyze the effective saccharification of foodwastes composed of complex organic compounds could adequately explain the cases under various saccharification conditions. The kinetics results would be available for reducing sugars production processes, with the reducing sugars obtained at a lower cost can be used as carbon and energy sources in various fermentation industries.  相似文献   

11.
对玉米芯稀硫酸水解条件及糖化液发酵L-乳酸进行了初步研究。结果表明,玉米芯木聚糖最适水解条件为2%H2SO_4、120℃、30 min、固液比1:10,糖化液还原糖含量可达40.8 g/L,主要成分为木塘。细菌A-19可以利用水解液中的葡萄糖和木糖产酸,最适发酵条件为45℃、pH 6.5,从45℃~51℃、pH 5.5~pH 6.5产量均较高。用未浓缩的水解液发酵24 h,L-乳酸产量为30.6g/L,残糖为1.6 g/L,糖酸转化率为82.6%;用浓缩1倍的水解液发酵48 h,L-乳酸产量为41.4 g/L,残糖4.1g/L,糖酸转化率为68.2%,在发酵48 h后继续补料发酵至72 h(补料液为浓缩3倍的水解液),L-乳酸产量为50.9 g/L,残糖6.3 g/L,糖酸转化率为71.8%。该研究为利用木质纤维素生产L-乳酸奠定了一定基础。  相似文献   

12.
Summary A new variant, Candida boidinii variant 60, which is less sensitive to methanol and formaldehyde shocks was grown in continuous cultures with methanol as sole carbon source. The substrate concentration in the feeding medium was either 1% methanol or 3% methanol. Biomass production, methanol consumption, the formation of formaldehyde and gas exchange were measured at different dilution rates. With low methanol feeding (10 g/l) maximal productivity of 0.44 g biomass/l·h is obtained at a dilution rate of 0.14 h–1. Maximal specific growth rate is 0.18 h–1. A yield of 0.32 g biomass/g methanol was obtained and the respiration quotient was determined as 0.55. Independently of initial substrate concentration, biomass decreases if methanol and formaldehyde are accumulating in the culture broth.In the culture with high methanol feeding (30 g/l) cell concentratioon increases up to 9 g/l at D=0.04 h–1. At higher dilution rates methanol and form-aldehyde appear in the medium. Formaldehyde is then preferably oxidized without energy advantages for the cells. It seems that this enables the cells to overcome toxic effects caused by methanol and formaldehyde.  相似文献   

13.
Extracellular human granulocyte-macrophage colony stimulating factor (hGM-CSF) expression was studied under the control of the GAP promoter in recombinant Pichia pastoris in a series of continuous culture runs (dilution rates from 0.025 to 0.2 h−1). The inlet feed concentration was also varied and the steady state biomass concentration increased proportionally demonstrating efficient substrate utilization and constancy of the biomass yield coefficient (Yx/s) for a given dilution rate. The specific product formation rate (qP) showed a strong correlation with dilution rates demonstrating growth associated product formation of hGM-CSF. The volumetric product concentration achieved at the highest feed concentration (4×) and a dilution rate of 0.2 h−1 was 82 mg l−1 which was 5-fold higher compared to the continuous culture run with 1× feed concentration at the lowest dilution rate thus translating to a 40 fold increase in the volumetric productivity. The specific product yield (YP/X) increased slightly from 2 to 2.5 mg g−1, with increasing dilution rates, while it remained fairly invariant, for all feed concentrations demonstrating negligible product degradation or feed back inhibition. The robust nature of this expression system would make it easily amenable to scale up for industrial production.  相似文献   

14.
The effects of dilution rate and substrate feed concentration on continuous glycerol fermentation by Clostridium butyricum VPI 3266, a natural 1,3-propanediol producer, were evaluated in this work. A high and constant 1,3-propanediol yield (around 0.65 mol/mol), close to the theoretical value, was obtained irrespective of substrate feed concentration or dilution rate. Improvement of 1,3-propanediol volumetric productivity was achieved by increasing the dilution rate, at a fixed feed substrate concentration of 30, 60 or 70 g l−1. Higher 1,3-propanediol final concentrations and volumetric productivities were also obtained when glycerol feed concentration was increased from 30 to 60 g l−1, at D=0.05–0.3 h−1, and from 60–70 g l−1, at D=0.05 and 0.1 h−1·30 g l−1 of 1,3-propanediol and the highest reported value of productivity, 10.3 g l−1 h−1, was achieved at D=0.30 h−1 and 60 g l−1 of feed glycerol. A switch to an acetate/butyrate ratio higher than one was observed for 60 g l−1 of feed glycerol and a dilution rate higher than 0.10 h−1; moreover, at D=0.30 h−1 3-hydroxypropionaldehyde accumulation was observed for the first time in the fermentation broth of C. butyricum.  相似文献   

15.
The effects of furfural on the growth of the lactose-utilizing yeast Candida blankii 35 were investigated using the method of continuous cultivation under conditions of carbon limitation and at dilution rates of 0.1 and 0.25 h−1. The data obtained at dilution rate 0.1 h−1 and 0.04% furfural showed a decrease in the yield of biomass by 6% and in the RNA content, but the synthesis of cell protein increased with 11.6% compared to the control. Treatment with 0.08% furfural induced significant changes in growth and biosynthesizing ability. A strong inhibitory effect of furfural was observed: the biomass yield decreased by half at 48 h and the culture the reached the control level of protein content. The effect of 0.02% furfural at 0.25 h−1 dilution rate caused a significant reduction of biomass yield (34.4%) and the substrate utilization rate reached values higher by 52.4% at 48 h, but the protein-synthesizing ability of the cells slightly increased. The results showed that a treatment with 0.04 or 0.08% furfural caused significant disturbances of cell functions, the yields of biomass and protein drastically decreased and the culture was washed out. Data showed that the inhibitory effect of furfural on the growth and protein-synthesizing ability of Candida blankii 35 depends on the inhibitor concentration as well as the dilution rate. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
A continuous process was employed to improve the volumetric productivity of bioethanol production from cassava mash containing sludge and to simplify the process of ethanol production from cassava. After raw cassava powder was liquefied, it was used directly in a continuous process without sludge filtration or saccharification. A fermentor consisting of four linked stirrer tanks was used for simultaneous saccharification and continuous fermentation (SSCF). Although the mash contained sludge, continuous fermentation was successfully achieved. We chose the dilution rate on the basis of the maximum saccharification time; the highest volumetric productivity and ethanol yield were observed at a dilution rate of 0.028 h?1. The volumetric productivity, final ethanol concentration, and % of theoretical ethanol yield were 2.41 g/Lh, 86.1g/L, and 91%, respectively. This SSCF process using the self-flocculating yeast Saccharomyces cerevisiae CHFY0321 illustrates the possibility of realizing cost-effective bioethanol production by eliminating additional saccharification and filtration processes. In addition, flocculent CHFY0321, which our group developed, showed excellent fermentation results under continuous ethanol production.  相似文献   

17.
Candida utiilis NRRL Y-900 was grown on pineapple cannery waste as the sole carbon and energy source in a chemostat at dilution rates ranging between 0.05 and 0.65 h−1 to determine the growth kinetics. The cell yield coefficient varied with dilution rate and a maximum value of 0.662 ± 0.002 gx/gcarb was obtained at a dilution rate of 0.4 h−1. At steady state, the concentrations of carbohydrate, reducing sugar, and chemical oxygen demand (COD) appeared to follow Monod kinetics. At maximum specific growth rate (μmax) 0.65 h−1, the saturation constants for carbohydrate, reducing sugar and COD were 0.51 ± 0.02 gcarb/1, 0.046 ± 0.003 grs/1, and 1.036 ± 0.001 gCOD/1, respectively. Maximum biomass productivity (Q x max) 2.8 ± 0.03 gx/1 h was obtained at a dilution rate of 0.5 h−1. At this dilution rate, only 71.0 ± 0.41% COD was removed whereas at a dilution rate of 0.1 h−1, 98.2 ± 0.35% reduction in COD was achieved. At a dilution rate of 0.4 h−1, the optimal yeast productivity and reduction in COD were 2.7 ± 0.13 gp/1 h, and 84.2 ± 0.42%, respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Substrates that contain hexose as well as pentose sugars can form an interesting substrate for the production of ethanol. Pichia stipitis and a respiratory-deficient mutant of Saccharomyces diastaticus were used to convert such a substrate into ethanol under continuous culture conditions. With a sugar mixture (glucose 70%/xylose 30%) at 50 g/l, the xylose was entirely consumed when the dilution rate (D) did not exceed 0.006 h–1 whereas the glucose was entirely consumed whatever the D. The study of influence of initial substrate concentration (S0) was performed at D = 0.015 h–1. Under these conditions the substrate was entirely consumed when its initial concentration did not exceed 20 g/l. With S0 = 80 g/l the residual xylose concentration reached 20.5 g/l. At low D or at low S0, P. stipitis was the dominant species in the fermentor. Increasing the D or S0 resulted in the wash-out of P. stipitis mainly because of its low ethanol tolerance. Correspondence to: J. P. Delgenes  相似文献   

19.
Lignocellulosic biomass, if properly saccharified, could be an ideal feedstock for biohydrogen production. However, the high cellulases cost is the key obstacle to its development. In this work, cost‐effective enzyme produced by Trichoderma viride was used to saccharify cornstalk. To obtain high sugar yield, a central composite design of response surface method was used to optimize enzymatic saccharification process. Experimental results showed that the enzymatic saccharification rate reached the highest of 81.2% when pH, temperature, cellulases and substrate concentration were 5, 49.7 °C, 35.7 IU g?1, and 38.5 g L?1, respectively. The cornstalk hydrolysate was subsequently introduced to fermentation by Thermoanaerobacterium thermosaccharolyticum W16, the yield of hydrogen reached the highest level of 90.6 ml H2 g?1 pretreated cornstalk. The present results indicate the potential of using T. thermosaccharolyticum W16 for high yield conversion of cornstalk hydrolysate, which was saccharified by onsite enzyme produced by T. viride.  相似文献   

20.
Summary A strain of Saccharomyces uvarum produced extracellular invertase in a chemostat reactor using a medium containing corn steep liquor and sugars. The production of yeast invertase increased with increase in corn steep liquor concentration. The production rate of invertase was maximal at a dilution rate of 0.75 h–1. The production rate of invertase was found to be affected by the type of sugar substrate and fermentation temperature. The invertase in the crude broth could be purified by one-step DEAE chromatography. An 84% enzyme recovery with ninefold purification and 30-fold concentration could be achieved using this simple isolation procedure. Offsprint requests to: L. F. Chen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号