首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An assay for iduronate sulfatase (Hunter corrective factor)   总被引:10,自引:0,他引:10  
Acetylation of benzyl α-D-mannopyranoside with acetic anhydride-sodium acetate at room temperature gave crystalline benzyl 2,3,6-tri-O-acetyl-α-D-manno-pyranoside (25%) and benzyl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside (≈65%). Similar esterification of benzyl β-D-glucopyranoside yielded the crystalline benzyl 2,4,6-triacetate (66%), whereas the corresponding galactopyranoside gave the crystalline 3,4,6-, 2,3,6-, and 2,4,6-triacetates (3, 25, and 9%. respectively). The structures of these compounds were established by methylation with diazomethane-boron trifluoride etherate and were confirmed by n.m.r. studies.  相似文献   

2.
High-throughput quantitative analytical method for plant N-glycan has been developed. All steps, including peptide N-glycosidase (PNGase) A treatment, glycan preparation, and exoglycosidase digestion, were optimized for high-throughput applications using 96-well format procedures and automatic analysis on a DNA sequencer. The glycans of horseradish peroxidase with plant-specific core α(1,3)-fucose can be distinguished by the comparison of the glycan profiles obtained via PNGase A and F treatments. The peaks of the glycans with (91%) and without (1.2%) α(1,3)-fucose could be readily quantified and shown to harbor bisecting β(1,2)-xylose via simultaneous treatment with α(1,3)-mannosidase and β(1,2)-xylosidase. This optimized method was successfully applied to analyze N-glycans of plant-expressed recombinant antibody, which was engineered to contain a minor amount of glycan harboring β(1,2)-xylose. These results indicate that our DNA sequencer-based method provides quantitative information for plant-specific N-glycan analysis in a high-throughput manner, which has not previously been achieved by glycan profiling based on mass spectrometry.  相似文献   

3.
M Goodman  C Toniolo  E Peggion 《Biopolymers》1968,6(12):1691-1695
Recent improvements in apparatus permit the examination of circular dichroism (CD) and optical rotatory dispersion (ORD) spectra to 185 mμ. In addition, new solvents which are transparent to 185 mμ have become available for synthetic polypeptides. The spectral region 185–250 mμ is extremely important for the amide (peptide) chromophore, because of the presence at these wavelengths of the n–π* and π–π* bands,1 and of another transition, the assignment of which remains unsettled.2  相似文献   

4.
The structures of N-glycans of total glycoproteins in royal jelly have been explored to clarify whether antigenic N-glycans occur in the famous health food. The structural feature of N-glycans linked to glycoproteins in royal jelly was first characterized by immunoblotting with an antiserum against plant complex type N-glycan and lectin-blotting with Con A and WGA. For the detail structural analysis of such N-glycans, the pyridylaminated (PA-) N-glycans were prepared from hydrazinolysates of total glycoproteins in royal jelly and each PA-sugar chain was purified by reverse-phase HPLC and size-fractionation HPLC. Each structure of the PA-sugar chains purified was identified by the combination of two-dimensional PA-sugar chain mapping, ESI-MS and MS/MS analyses, sequential exoglycosidase digestions, and 500 MHz 1H-NMR spectrometry.

The immunoblotting and lectinblotting analyses preliminarily suggested the absence of antigenic N-glycan bearing β1-2 xylosyl and/or α1-3 fucosyl residue(s) and occurrence of β1-4GlcNAc residue in the insect glycoproteins.

The detailed structural analysis of N-glycans of total royal jelly glycoproteins revealed that the antigenic N-glycans do not occur but the typical high mannose-type structure (Man9~4GlcNAc2) occupies 71.6% of total N-glycan, biantennary-type structures (GlcNAc2Man3GlcNAc2) 8.4%, and hybrid type structure (GlcNAc1Man4GlcNAc2) 3.0%. Although the complete structures of the remaining 17% N-glycans; C4, (HexNAc3Hex3HexNAc2: 3.0%), D2 (HexNAc2Hex5HexNAc2: 4.5%), and D3 (HexNAc3Hex4HexNAc2: 9.5%) are still obscure so far, ESI-MS analysis, exoglycosidase digestions by two kinds of β-N-acetylglucosaminidase, and WGA blotting suggested that these N-glycans might bear a β1-4 linkage N-acetylglucosaminyl residue.  相似文献   

5.
G D Fasman 《Biopolymers》1966,4(5):509-519
Poly-O-acetyl-hydroxy-L -proline, forms I and II have been studied by optical rotatory dispersion (ORD) and ultraviolet spectrophotometry in solution and in the solid state. Cotton effects of opposite sign, but not mirror images, were observed in the 250 mμ region for the two forms (Form I, peak 278 mμ; crossover, 254 mμ; trough, 244 mμ: Form II, trough 270 mμ; crossover, 248 mμ; peak, 238 mμ). Thus, the Cotton effects for a right-handed and left-handed helix have been shown to be opposite for the proline type helices I and II. The ORD of films of form I was found to have a positive Cotton effect further into the ultraviolet region with peak at 218 mμ. Absorption spectra showed a shift of 8 mμ in the absorption peak in the 200 mμ region for the two forms (form. I, 211 mμ; form II, 203 mμ). A shoulder was demonstrated in the film absorption spectra in the 250 mμ region where the Cotton effects are found. The mixing of the n, π* and π, π* states of the amide chromophore and n, π* state of the ester chromophore was suggested as being responsible for the Cotton effects in the 250 mμ region.  相似文献   

6.
A block copolymer [γ-Et-DL -Glu]m [L -Trp]n was prepared using N-carboxy anhydrides (NCA) of L -tryptohan and γ-ethyl DL -glutamate. The block copolymer, dissolved in trifluoroethanol (TFE)–dichloroacetic acid (DCA) mixtures, exhibited a sharp change in the specific rotation at 546 mμ when the solvent composition reached 70–75% DCA content. Optical rotatory dispersion (ORD) and circular dichroism (CD) measurement were carried out in TFE solution in the spectral range 180–350 mμ. Indole side-chain chromophores were found to be optically active in the polymer. On the other hand, these groups exhibit very small optical activity in the model compound C6H3? CH2? O? CO? (L -Trp)2? O? CH3. Indole groups therefore appear to be in a dissymmetric environment only in the polymer. From these data it was concluded that poly-L -Trp is in some type of helical conformation in TFE. Strong overlapping of CD bands from side-chain chromophores and peptides chromophores in the wavelength range 185–240 mμ does not allow definite conclusions to be drawn about the type of helical conformation which exists in poly-L -Trp in TFE solution.  相似文献   

7.
1,2,3,4,6-Penta-O-acetyl-beta-D-galactopyranose was transformed into phenyl 2,3,4,6-tetra-O-benzyl-1-thio-beta-D-galactopyranoside (5) and 4-methoxyphenyl 2,3,6-tri-O-benzoyl-beta-D-galactopyranoside (8) in 73% (two steps) and 58% (three steps) yield, respectively. Glycosylation of the acceptor 8 with donor 5 using N-iodosuccinimide-trimethylsilyl trifluoromethanesulfonate as promoter furnished the galabioside 9 (8.8 g) in 95% yield. Further transformations provided in high yields anomerically-activated galabiosides (thioglycoside (1), trichloroacetimidate (2), and bromosugar (3)) suitable for use as glycosyl donors in syntheses of galabiose-containing oligosaccharides. Several of the compounds reported here are crystalline, which greatly simplified purifications.  相似文献   

8.
The seeds of Anthocephalus indicus contain a water-soluble polysaccharide composed of D-xylose, D-mannose, and D-glucose in the molar ratios 1:3:5. Methylation analysis afforded 2,3,4-tri-O-methyl-D-xylose, 2,3,6,-tri-O-methyl-D-mannose, 2,3,6-tri-O-methyl-D-glucose, 2,3-di-O-methyl-D-glucose, and 2,3,4,6-tetra-O-methyl-D-glucose in the molar ratios 7:21:12:15:8. Periodate oxidation and methylation data indicated 22.5% and 21.9% of end groups, respectively. The above findings, together with the results of partial hydrolysis with acid, indicate the polysaccharide to consist of a linear chain of (1→4)-linked β-D-mannosyl and β-D-glucosyl residues to which α-D-xylosyl and β-D-glucosyl groups are attached by (1→6)-linkages.  相似文献   

9.
The conformation of poly-L-alanine in hexafluoroisopropanol   总被引:2,自引:0,他引:2  
J R Parrish  E R Blout 《Biopolymers》1972,11(5):1001-1020
High-molecular-weight poly-L -alanine dissolved in hexafluoroisopropanol exhibits infrared, ultraviolet, circular dichroism, and optical rotatory dispersion spectra which are unique and unlike any other previously reported polypeptide spectra. Strong evidence that a helical conformation is present is shown by the high degree of hypochromism in the 187mμ absorption peak and by the positions of the amide infrared bands. The CD and ORD spectra are also similar to those of α-helical polypeptides, though important qualitative and qualitative differences are observed. To explain the novel spectra, which are not mixtures of the spectra of previously reported polypeptide conformations, a new α-helix-like conformation is proposed. The postulated conformation (a doubly hydrogen-bonded helix) is a distorted α-helix in which the peptide carbonyl groups point slightly out from the helix axis and are hydrogen bonded simul taneously both to the NH of the fourth peptide residue to the carboxyl terminal side (as in the classical α-helix), as well as to a solvent molecule's hydroxyl hydrogen.  相似文献   

10.
Development of convenient strategies for identification of plant N-glycan profiles has been driven by the emergence of plants as an expression system for therapeutic proteins. In this article, we reinvestigated qualitative and quantitative aspects of plant N-glycan profiling. The extraction of plant proteins through a phenol/ammonium acetate procedure followed by deglycosylation with peptide N-glycosidase A (PNGase A) and coupling to 2-aminobenzamide provides an oligosaccharide preparation containing reduced amounts of contaminants from plant cell wall polysaccharides. Such a preparation was also suitable for accurate qualitative and quantitative evaluation of the N-glycan content by mass spectrometry. Combining these approaches allows the profiling to be carried out from as low as 500 mg of fresh leaf material. We also demonstrated that collision-induced dissociation (CID) mass spectrometry in negative mode of N-glycans harboring α(1,3)- or α(1,6)-fucose residue on the proximal GlcNAc leads to specific fragmentation patterns, thereby allowing the discrimination of plant N-glycans from those arising from mammalian contamination.  相似文献   

11.
G. Keilich  H. Bittiger 《Biopolymers》1972,11(10):1997-2013
Measurements of optical rotatory dispersion (ORD) and circular dichroism (CD) were made in the range of 400–205 nm for polysaccharide tribenzoates such as 2,3,6-tri-O-benzoyl amylose (I), 2,3,4-tri-O-benzoyl dextran (II), tri-O-benzoyl pullulan (III), 2,3,6-tri-O-benzoyl cellulose (IV), 2,3,6-tri-O-benzoyl mannan (V), and polyglycan dibenzoates such as 2,3,-di-O-benzoyl amylose (VI), cellulose (VII), and mannan (VIII). All compounds exhibit Cotton effects in the region of their UV absorption bands (206–285 nm). Comparison of the corresponding di- and tribenzoyl polysaccharides shows a qualitative agreement in number, position and sign of the CD bands but differences in ellipticity magnitude. The disubstituted derivatives exhibit smaller amplitudes than the trisubstituted ones. The contribution of the C(6) chromophore (linked by a CH2-group to the asymmetric C(5) atom) was determined to be of the same sign as the combined contribution of the C(2) and C(3) substituents. The CD bonds of the individual polysaccharide derivatives, which differ in number, sign, and position, were discussed in terms of the steric position of the single chromophores and the steric arrangement and interaction caused by the configuration of the polysaccharides. The optical behavior of these polysaccharide derivatives was found to be not strongly influenced by a definite chain conformation in solution.  相似文献   

12.
V N Damle 《Biopolymers》1970,9(8):937-954
Absorption, circular dichroism (CD), and optical rotatory dispersion (ORD) measurements were carried out on poly-L -tyrosine in trimethyl phosphate solution over the spectral range 185–600 mμ. There is evidence in the CD spectrum for side chain-side chain interactions in poly-L -tyrosine. ORD and CD data in dimethylformamide and pyridine closely parallel those in trimethyl phosphate, indicating a similarity in conformation of the polymer in all three solvents. In the polarized infrared spectrum both position and polarization of amide A, I, and II bands are characteristic of α-helical polypeptides. Bands corresponding to side chain also exhibit dichroism, suggesting that the side chains are not randomly oriented. Viscosity and light-scattering studies are consistent with α-helical structure for the polymer that, remains rigid over a temperature range of 15–50°C and becomes somewhat flexible at higher temperatures. Optical rotatory properties were found to vary gradually and continuously with temperature over the range of ?30 to +100°C. This suggested that all three electronic transitions of tyrosyl side chain are optically active, and that the side chains have some freedom of motion that decreases with decreasing temperature, disappearing only at about ?30°C.  相似文献   

13.
The alkali-soluble polysaccharides have been surveyed in the seeds of 7 species of the Liliaceae and 2 species of the Iridaceae. All appear to contain galactoglucomannans and/or glucomannans. The structure of the water-soluble galactoglucomannan from the endosperm of Asparagus officinalis has been studied in detail. It contains residues of glucose, mannose and galactose in the ratio 43:49:7. Hydrolysis of the fully methylated polysaccharide released 2,3,4,6-tetra-O-methyl-d-hexoses (mannose and glucose), 2,3,4,6-tetra-O-methyl-d-galactose, 2,3,6-tri-O-methyl-d-mannose, 2,3,6-tri-O-methyl-d-glucose, 2,3-di-O-methyl-d-mannose and 2,3-di-O-methyl-d-glucose in the molar proportions of 1:4.5:50:41:2:1·5. The following oligosaccharides were identified on partial hydrolysis of the galactoglucomannan: mannobiose, mannotriose, mannotetraose, cellobiose, glucopyranosylmannose, mannopyranosylglucose and a trisaccharide composed of two mannosyl residues and one glucosyl residue. The galactoglucomannan consists of a linear chain of β(1 → 4)-Iinked d-mannosyl and d-glucosyl residues, to which are attached single-unit galactosyl side chains. The galactose residues are linked 1 → 6, probably α. The terminal, non-reducing residues of the main chain may be either glucosyl or mannosyl units but the former predominate.  相似文献   

14.
Despite the great significance of release and analysis of glycans from glycoproteins, the existing N-glycan release methods are undermined by some limitations and deficiencies. The traditional enzymatic protocols feature high N-glycan release specificity but are generally costly and inefficient for some types of N-glycans. The existing chemical methods require harsh reaction conditions or are accompanied by the remarkable formation of by-products. Herein, we describe a versatile chemical method for the release and analysis of N-glycans from glycoproteins. This method differs from the existing methods as only aqueous ammonia is used to catalyze the N-glycan release reactions. Optimization of reaction conditions was performed using RNase B as a model glycoprotein and the obtained results indicated a highest N-glycan yield in ammonia at 60 °C for 16 h. Comparison of this method with traditional enzymatic protocols and recently reported NaClO methods confirmed the good reliability and efficiency of the novel approach. We also successfully applied this method to some complex biological samples, such as Ginkgo seed protein, fetal bovine serum (FBS) and hen egg white, and demonstrated its great compatibility with various neutral N-glycans, core α-1,3-fucosylated N-glycans and sialylated N-glycans. This method is very simple and cost-effective, enabling convenient analysis and large-scale preparation of released reducing N-glycans from various biological samples for structural and functional glycomics studies.  相似文献   

15.
Jack bean α-mannosidase (JBM) is a well-studied plant vacuolar α-mannosidase, and is widely used as a tool for the enzymatic analysis of sugar chains of glycoproteins. In this study, the JBM digestion profile of hybrid-type N-glycans was examined using pyridylamino (PA-) sugar chains. The digestion efficiencies of the PA-labeled hybrid-type N-glycans Manα1,6(Manα1,3)Manα1,6(GlcNAcβ1,2Manα1,3)Manβ1,4GlcNAcβ1,4GlcNAc-PA (GNM5-PA) and Manα1,6(Manα1,3)Manα1,6(Galβ1,4GlcNAcβ1,2Manα1,3)Manβ1,4GlcNAcβ1,4GlcNAc-PA (GalGNM5-PA) were significantly lower than that of the oligomannose-type N-glycan Manα1,6(Manα1,3)Manα1,6Manβ1,4GlcNAcβ1,4GlcNAc-PA (M4-PA), and the trimming pathways of GNM5-PA and GalGNM5-PA were different from that of M4-PA, suggesting a steric hindrance to the JBM activity caused by GlcNAcβ1-2Man(α) residues of the hybrid-type N-glycans. We also found that the substrate preference of JBM for the terminal Manα1-6Man(α) and Manα1-3Man(α) linkages in the hybrid-type N-glycans was altered by the change in reaction pH, suggesting a pH-dependent change in the enzyme-substrate interaction.  相似文献   

16.
The structures of unconjugated or free N-glycans in stems of soybean seedlings and dry seeds have been identified. The free N-glycans were extracted from the stems of seedlings or defatted dry seeds. After desalting by two kinds of ion-exchange chromatography and a gel filtration, the free N-glycans were coupled with 2-aminopyridine. The resulting fluorescence-labeled (PA-) N-glycans were purified by gel filtration, Con A affinity chromatography, reverse-phase HPLC, and size-fractionation HPLC. The structures of the PA-sugar chains purified were analyzed by the combination of two-dimensional sugar chain mapping, jack bean α-mannosidase digestion, α-1,2-mannosidase digestions, partial acetolysis, and ESI-MS/MS. The free N-glycan structures found showed that two categories of free N-glycans occur in the stems of soybean seedlings. One is a high-mannose type structure having one GlcNAc residue at the reducing end (Man9~5GlcNAc1, 93%), that would be derived by endo-GM (Kimura, Y. et al., Biochim. Biophys. Acta, 1381, 27-36 (1998)). The other small component is a xylose-containing type one having two GlcNAc residues at the reducing end (Man3Xyl1GlcNAc2, 7%), which would be derived by PNGase-GM (Kimura, Y. and Ohno, A., Biosci. Biotechnol. Biochem., 62, 412-418 (1998)). The detailed structural analysis of free glycans showed that high-mannose type free N-glycans (Man9~5GlcNAc1) in the soybean seedlings have a common core structural unit; Manα1- 6(Man1-3)Manα1-6(Manα1-3)Manβ1-4GlcNAc.

Comparing the amount of free N-glycans in the seedling stems and dry seeds, the amount in the stems of seedlings was much higher than that in the dry seeds; approximately 700 pmol per one stem, 8 pmol in one dry seed. This fact suggested that free N-glycans in soybean seedlings could be produced by two kinds of N-glycan releasing enzymes during germination or seedling-development.  相似文献   

17.
Stereoselective, total synthesis of O-alpha-D-galactopyranosyl-(1----4) -O-beta-D-galactopyranosyl-(1----4)-O-beta-D-glucopyranosyl-(1----1)-N -tetracosanoyl-[2S,3R,4E (and 4Z)]-sphingenine and O-alpha-D -galactopyranosyl-(1----3)-O-beta-D-galactopyranosyl-(1----4)-O-beta-D -glucopyranosyl-(1----1)-N-tetracosanoyl-(2S,3R,4E)-sphin gen ine was achieved by using O-(2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl) -(1----4)-O-(2,3,6-tri-O-acetyl-beta-D-galactopyranosyl)-(1----4)-2,3,6- tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate, O-(2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl) -(1----4)-O-(2,3,6-tri-O-acetyl-beta-D-galactopyranosyl)-(1----4)-2,3,6- tri-O-acetyl-alpha (and beta)-D-glucopyranosyl fluoride, and O-(2,3,4,6-tetra-O-acetyl-alpha-D -galactopyranosyl)-(1----3)-O-(2,3,6-tri-O-acetyl-beta-D-galactopyran osyl)-(1----4)-2,3,6-tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate.  相似文献   

18.
Recently, our group reported the expression of recombinant human erythropoietin in goat milk (rhEPO-milk) as well as in the mammary epithelial cell line GMGE (EPO-GMGE) by cell culture using the adenoviral transduction system. N-Glycosylation characterization of rhEPO-milk by Normal-Phase HPLC profiling of the fluorophore, 4-aminobenzoic acid-labeled enzymatically released N-glycan pool from rhEPO-goat milk, combined with MALDI, ESI-MS and LC/MS, revealed that low branched, core-fucosylated, N-glycans predominate. The labeled N-glycans were separated into neutral and charged fractions by anion exchange chromatography and the charged N-glycans were found to be mostly α2,6-monosialylated with Neu5Ac or Neu5Gc in a ratio of 1:1. Unlike the N-glycans from rhEPO produced in CHO cells, where the glycans are multiantennary highly sialylated, core-fucosylated oligosaccahrides, or even in the goat mammary gland epithelial cell line cultured in vitro in which multiantennary, core- and outer-arm fucosylated, monosialylated N-glycans are the most abundant species, a large proportion of the N-glycans from rhEPO-milk were monosialylated, biantennary, antennae mostly terminating with the more unusual GalNAc-GlcNAc motive and without outer-arm fucosylation. These findings, emphasizing the difference in the N-glycan repertoire between the rhEPO-milk and EPO-GMGE, are consistent with the principle that glycosylation is cell-type dependent and that the cell environment is crucial as well.  相似文献   

19.
The N-glycan pattern of an IgG antibody, attached at a conserved site within the fragment crystallizable (Fc) region, is a critical antibody quality attribute whose structural variability can also impact antibody function. For tailoring the Fc glycoprofile, glycoengineering in cell lines as well as Fc amino acid mutations have been applied. Multiple glycoengineered Chinese hamster ovary cell lines were generated, including defucosylated (FUT8KO), α-2,6-sialylated (ST6KI), and defucosylated α-2,6-sialylated (FUT8KOST6KI), expressing either a wild-type anti-CD20 IgG (WT) or phenylalanine to alanine (F241A) mutant. Matrix-assisted laser desorption ionization-time of flight mass spectrometry characterization of antibody N-glycans revealed that the F241A mutation significantly increased galactosylation and sialylation content and glycan branching. Furthermore, overexpression of recombinant human α-2,6-sialyltransferase resulted in a predominance of α-2,6-sialylation rather than α-2,3-sialylation for both WT and heavily sialylated F241A antibody N-glycans. Interestingly, knocking out α-1,6-fucosyltransferase (FUT8KO), which removed core fucose, lowered the content of N-glycans with terminal Gal and increased levels of terminal GlcNAc and Man5 groups on WT antibody. Further complement-dependent cytotoxicity (CDC) analysis revealed that, regardless of the production cells, WT antibody samples have higher cytotoxic CDC activity with more exposed Gal residues compared to their individual F241A mutants. However, the FUT8KO WT antibody, with a large fraction of bi-GlcNAc structures (G0), displayed the lowest CDC activity of all WT antibody samples. Furthermore, for the F241A mutants, a higher CDC activity was observed for α-2,6- compared to α-2,3-sialylation. Antibody-dependent cellular cytotoxicity (ADCC) analysis revealed that the defucosylated WT and F241A mutants showed enhanced in vitro ADCC performance compared to their fucosylated counterparts, with the defucosylated WT antibodies displaying the highest overall ADCC activity, regardless of sialic acid substitution. Moreover, the FcγRIIIA receptor binding by antibodies did not always correspond directly with ADCC result. This study demonstrates that glycoengineering and protein engineering can both promote and inhibit antibody effector functions and represent practical approaches for varying glycan composition and functionalities during antibody development.  相似文献   

20.
Circular dichroism (CD) curves are reported for poly dA, (pdA)6, (pdA)2, poly A, ApAp, ApA, AMP, dApA, pdApA, A-2′-O-methyl pA, and A-2′-O-methyl pAp. Analysis of these curves indicated the presence of single CD bands at 228–230 mμ and at 278–280 mμ in oligomers longer than dinucleotides. In the case of dinucleotides and mononucleotides (from the literature, in addition to those studied here), the 230 mμ CD of band appears but the 280 mμ CD band does not. We assign the 230 mμ band to a very weak π–π* transition at this wavelength. From theoretical considerations, we show that the 280 mμ band is not an exciton component of the strong π–π* transition at 260 mμ in adenine. We conclude that the 280 mμ CD band must be assigned to a distinct absorption, not previously reported, which we suggest arises from an n–π* transition. The fact that the n–π* CD band at 280 mμ is not seen in mononucleotides or dinucleotides is ascribed to solvation of the adenine ring by water, which shifts the band to shorter wavelengths. Therefore, only interior residues of oligomers have the 280 mμ band, and the optical activity of a polymer cannot be computed from that of a dinucleotide, by using a nearest-neighbor approximation. The existence of this end effect hag been tested, by taking it into account in computing the rotational strengths of the 278 mμ n–π* transition for several oligomers; it is pointed out that a more sensitive test of this end effect would require CD data for the oligo dA series of 3 to 5 residues. We speculate about the structural and optical differences between poly dA and poly A, and point out the need for a theoretical treatment of n–π* Cotton effects in polynucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号