首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primordial cord and the primitive, single and primordial islets present in the 3 earliest stages of the developing endocrine pancreas of sea bass were studied ultrastructurally. The primordial cord consisted of type I and II cells and was included in the gut. Besides these cell types, X cells were seen in the primitive islet. The single islet was made up of type I, II, III and IV cells. A correlation between these endocrine cell-types and cells previously identified immunocytochemically, was established. Type I, II, III and IV cells, correlated respectively with SST-25-, insulin-, SST-14- and glucagon-immunoreactive cells, and could be related to the D1, B, D2 and A cells, respectively, of older larvae and adult sea bass. Each cell type shows characteristic secretory granules from its first appearance. A progressive development of the organelles and an increase in the number and size of the secretory granules, whose ultrastructure also varied, was observed in the endocrine cells of the primordial cord and the succeeding islets. In 25-day-old larvae at the beginning of the fourth developmental stage, the primordial islet, the first ventral islet found, was close to a pancreatic duct and blood vessel, and consisted of type I and II cells whose ultrastructure was similar to that of the type I and II cells in the primordial cord. These data suggest a ductular origin for the pancreatic endocrine cells in the ventral pancreas. It is suggested that although endocrine cells undergo mitosis, their increase in number during the earliest development stages is principally due to the differentiation of surrounding cells.  相似文献   

2.
The ultrastructure of three types of gland cells of embryos and free-swimming larvae of Austramphilina elongata is described. Type I gland cells contain large, more or less round electron-dense granules which are formed by numerous Golgi complexes. Type II gland cells contain thread-like, membrane-bound secretory granules with longitudinally arranged microtubules inside the granules; secretory droplets are produced by Golgi complexes and the microtubules apparently condense in the cytoplasm or in the droplets. Type III gland cells contain irregular-ovoid membrane-bound granules with coiled up microtubules which have an electron-dense core; the granules are formed by secretionderived from Golgi complexes and the microtubules aggregate around and migrate into the secretion; microtubules are at first hollow and the early secretory granules have a central electron-dense region.  相似文献   

3.
The endocrine cells in the stomach gland patch of the koala (Phascolarctos cinereus) were studied ultrastructurally. They were classified into 3 types based on the ultrastructural profiles of their endocrine granules and tentatively categorized as type I, II, and III endocrine cells. Type I cells contained round granules that were for the most part larger than those observed in the other 2 cell types. The granules ranged from moderate to relatively high in electron density. Type II cells were angular in shape and characterized by the presence of granules that were polymorphous in profile. Contents of the endocrine granules in type II cells also showed a range of high to moderate electron density. Type III cells were oval or pyramidal in shape. They contained highly polymorphous granules that were round, oval, dumbbell-like or comma in shape and characterized by the presence of a clear space or halo separating the high to low electron-dense core from the limiting membrane of granules. Type III cells were observed most often whereas type I and II cells were a less frequent observation.  相似文献   

4.
Summary In the pancreas of Scyliorhinus stellaris large islets are usually found around small ducts, the inner surface of which is covered by elongated epithelial cells; thus the endocrine cells are never exposed directly to the lumen of the duct. Sometimes, single islet cells or small groups of endocrine elements are also incorporated into acini. Using correlative light and electron microscopy, eight islet cell types were identified:Only B-cells (type I) display a positive reaction with pseudoisocyanin and aldehyde-fuchsin staining. This cell type contains numerous small secretory granules (Ø280 nm). Type II- and III-cells possess large granules stainable with orange G and azocarmine and show strong luminescence with dark-field microscopy. Type II-cells have spherical (Ø700 nm), type III-cells spherical to elongated granules (Ø450 × 750 nm). Type II-cells are possibly analogous to A-cells, while type III-cells resemble mammalian enterochromaffin cells. Type IV- cells contain granules (Ø540 nm) of high electron density showing a positive reaction to the Hellman-Hellerström silver impregnation and a negative reaction to Grimelius' silver impregnation; they are most probably analogous to D-cells of other species. Type VI-cells exhibit smaller granules (Ø250 × 500 nm), oval to elongated in shape. Type VI-cells contain small spherical granules (Ø310 nm). Type VII-cells possess two kinds of large granules interspersed in the cytoplasm; one type is spherical and electron dense (Ø650 nm), the other spherical and less electron dense (Ø900 nm). Type VIII-cells have small granules curved in shape and show moderate electron density (Ø100 nm). Grimelius-positive secretory granules were not only found in cell types II and III, but also in types V, VI, and VII. B-cells (type I) and the cell types II to IV were the most frequent cells; types V to VII occurred occasionally, whereas type VIII-cells were very rare.This work was supported by a fellowship from the Ministry of Education of Japan and the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg (La 229/8)  相似文献   

5.
The clitellar epithelium of the freshwater oligochaete, Tubifex hattai, is composed of four types of gland cells (Type I, II, III, and IV), in addition to the cells generally found in the epidermis of this worm. The possible function of these gland cells in cocoon formation was studied with the electron microscope. Type I cells discharge their secretory granules by means of compound exocytosis and provide the materials for the future cocoon membrane. Immediately after completion of the discharge from Type I cells, Type II and III cells simultaneously discharge their secretory granules by means of compound exocytosis. The secretions from Type II cells constitute a colloid in the cocoon lumen and probably cause structural modifications in the future cocoon membrane. The secretory products from Type III cells form the cocoon plug. Although the process of discharge of secretory granules from Type IV cells was not observed, the contribution of these cells to the cocoon formation, producing hoops on the outer surface of the future cocoon membrane and fixing its anterior ends on the clitellum, is inferred from a morphological comparison of the hoop and the structure of the secretory granules.  相似文献   

6.
Summary Growth hormone (GH) secretory cells were identified by immunogold cytochemistry, and were classified on the basis of the size of secretory granules. Type I cells contained large secretory granules (250\2-350 nm in diameter). Type II cells contained the large secretory granules and small secretory granules (100\2-150 nm in diameter). Type III cells contained the small secretory granules. The percentages of each GH cell type changed with aging in male and female rats of the Wistar/Tw strain. Type I cells predominated throughout development; the proportion of type I cell was highest at 6 months of age, and decreased thereafter. The proportion of type II and type III cells decreased from 1 month to 6 months of age, but then increased at 12 and 18 months of age. The pituitary content of GH was highest at 6 months of age, and decreased thereafter. Estrogen and androgen, which are known to affect GH secretion, caused changes in the proportion of each GH cell type. The results suggest that when GH secretion is more active the proportion of type I GH cell increased, and when GH secretion is less active the proportion of type II and type III cells increased. The type III GH cell may therefore be an immature type of GH cell, and the type I cell the mature type of GH cell. Type II cells may be intermediate between type I and III cells.  相似文献   

7.
The ultrastructure of neurohaemal areas on abdominal nerves of the blood-sucking bug Rhodnius prolixus was investigated. Four types of axon terminals were found, distinguished by the morphology of their neurosecretory granules. By use of post-embedding immunogold labelling, granules in Type I axon terminals were shown to contain serotonin-like immunoreactive material, and granules in Type II axon terminals were shown to contain FMRFamide-like immunoreactive material. There was no colocalization of these materials. It is suggested that Type III terminals contain peptidergic diuretic hormone, which has previously been reported to be present in electron-dense neurosecretory granules in this neurohaemal area. The identity of material in Type IV terminals is unknown.  相似文献   

8.
One distinguishing feature of clitellate annelids is the presence of specialized segments comprising the clitellum, whose primary function is to secrete a cocoon. Using histological analyses, we have documented cell types (I-V) and cellular processes associated with cocoon secretion in the aquatic leech, Theromyzon tessulatum. Our data indicate that the bulk of the cocoon's biomass arises from precursor cells of a single type that hypertrophy and proliferate ∼1 week prior to egg laying, and then differentiate into either of two cell types (i.e., Type II or Type III) depending on their position within the clitellum. Type II cells are concentrated along the lateral edges and venter of the clitellum and secrete alcian blue-staining granules that form opercula (i.e., glue-like material that seals both cocoon ends), while Type III cells populate the dorsal midline and secrete azocarmine-staining granules that build the cocoon wall. Both cell types occupy spaces between deep muscle layers and extend long-neck tubules to the surface epithelium as they fill with granules a few days prior to egg laying. Other cell types appear to make minor contributions to the cocoon (e.g., Type I, Type IV) or have supporting or signaling roles (e.g., Type V). Our observations suggest that post-translational modification (i.e., glycosylation) of the same core protein(s) distinguishes the granules of Type II/III cells, and that the default state of the Type II/III precursor may be evolutionarily linked to secretory cells in basal polychaetes.  相似文献   

9.
Growth hormone (GH), prolactin (PRL), and mammosomatotrope (MS) cells of gilthead sea bream, Sparus aurata, a teleost fish, were studied in specimens from hatching to 15 months (adults) using conventional electron microscopy and an immunogold method using anti-tilapia GH sera and anti-chum salmon PRL serum. MS cells, immunoreactive to both anti-GH sera and anti-PRL sera, had been first identified in fish in a previous study in newly hatched larvae and in older larvae and juvenile specimens of Sparus aurata by light microscopic immunocytochemistry. In the present work, MS cells reacted positively to immunogold label only in older larvae and juveniles and their secretory granules immunoreacted with both GH and PRL antisera or with only one of them. MS cells were ultrastructurally similar to the PRL cells, with which they coincided in time. This is the first report on the ultrastructural characterization of MS cells in fish. In adults, the secretory granules of GH cells (immunoreactive to anti-GH serum) were mainly round, of variable size, and had a homogeneous, highly electron-dense content. Irregularly shaped secretory granules were also present. PRL cells (immunoreactive to anti-PRL serum) were usually observed in a follicular arrangement; they showed few, small, and mainly round secretory granules with a homogeneous and high or medium electron-dense content. Some oval or elongated secretory granules were also observed. GH and PRL cells that showed involutive features were also found. In newly hatched larvae, GH, PRL, and MS cells could not be distinguished either by their ultrastructure or by the immunogold labeling of the secretory granules. In 1-day-old larvae, presumptive GH and PRL cells were observed according to their position in the pituitary gland. In 2-day-old larvae, a few cells showed some of the ultrastructural features described for GH and PRL cells of adults. During development, the number, size, and shape of the secretory granules in both cell types clearly increased and the organelles developed gradually. Some GH cells were found undergoing mitosis.  相似文献   

10.
The third-stage (L3) larvae of Anisakis, which are the etiological agents of human anisakiasis, have been categorized morphologically into Anisakis Type I larvae and Anisakis Type II larvae. Genetic analysis has allowed easy identification of these larvae: Anisakis Type I larvae include the species Anisakis simplex sensu stricto, Anisakis pegreffii, Anisakis simplex C, Anisakis typica, Anisakis ziphidarum, and Anisakis nascettii, whereas Anisakis Type II larvae include the species Anisakis physeteris, Anisakis brevispiculata, and Anisakis paggiae. Since human consumption of raw fish and squid is common in Japan, we investigated Anisakis L3 larvae in 44 specimens of Beryx splendens from Japanese waters. A total of 730 Anisakis L3 larvae collected from B. splendens were divided morphologically into 4 types: Type I, Type II, and 2 other types that were similar to Anisakis Type III and Type IV described by Shiraki (1974). Anisakis Type II, Type III, and Type IV larvae all had a short ventriculus, but their tails were morphologically different. In addition, data from genetic analysis indicated that Anisakis Type II, Type III, and Type IV larvae could be identified as A. physeteris, A. brevispiculata, and A. paggiae, respectively. Therefore, A. physeteris, A. brevispiculata, and A. paggiae can be readily differentiated not only by genetic analysis but also by morphological characteristics of L3 larvae.  相似文献   

11.
Summary Pituitaries from normal, young and adult male rats were fixed either in sublimate-formalin or in glutaraldehyde-osmium. In adjacent Paraplast sections, almost all the gonadotrophs were immunostained with both LH and FSH antisera. The rat LH and FSH antisera used were shown to be highly specific by the absorption test and by double antibody radioimmunoassay. Thin and thick adjacent Epon sections were prepared for EM and immunohistochemical examination. Cells stained with the rat LH antiserum were identified by LM, and then observed in detail by EM. On the basis of these observations we suggest that the LH cells are arranged in a sequence of basophils, i.e., Types II/III, III, III/IV and IV: Type II/III basophils are elongate with a cytoplasmic process and less vesiculated. They have morphological features of Type II (classical thyrotrophs) and also of Type III basophils. Type III basophils are oval in shape and moderately vesiculated. Both Types II/III and III basophils can be divided into two classes of cell characterized mainly by the existence of only small secretory granules (150–220 nm in diameter) (Type A) or by the coexistence of small and large (350–500 nm) (Type B). Type III/IV basophils are cells intermediate between types III and IV basophils, and moderately vesiculated with an abundance of secretory granules (150–300 nm in diameter). Type IV basophils are large, spherical or oval cells whose RER cisternae are conspicuously dilated; they contain less numerous secretory granules (150–300 nm in diameter). It is concluded that LH cells are not a single cell type, but include a wide range of subtypes.  相似文献   

12.
The histology and ultrastructure of the salivary glands of male and female H.a. anatolicum ticks have been examined m unfed and feeding ticks with special emphasis on aspects related to the feeding process. The salivary glands of H.a. anatolicum consisted of three types of acinus (acinus I, II and III) in females and an additional type IV acinus in males. The type I acinus was agranular and showed slight morphologic changes during feeding. The presence of cells with ultrastructural features characteristic of epithelia involved in the secretion of hyperosmotic fluids supports the hypothesis that these acini secrete hygroscopic saliva during questing stages to absorb water from an unsaturated atmosphere. There were five granular cell types (a, b, c1c3) in type II acinus, three granular cell types (d, e, and f) in type III acinus, and one granular cell type (g) in type IV acinus. The cells a, d and e secreted most of their granules early in feeding and are considered to be cement precursors. The b and c cells appeared to synthesise and secrete their products throughout feeding and so are likely to secrete anticoagulants, enzymes and other pharmacologically active agents required during feeding. The interstitial cells, which were insignificant in acinar types II, III and IV of unfed ticks, became more distinct during feeding. The type III acinus in females showed remarkable cell transformations, during the course of feeding. The ablumenal interstitial cells of type III acinus, in females formed a basal labyrinth of extraordinary complexity by interdigitating with the basolateral membranes of transformed f cells to form a network of extracellular channels to excrete fluid during feeding. There was an enormous increase in the secretory granules of g cells as the feeding advanced. The secretory granules were released by a process of exocytosis, by direct fusion with the apical membranes and through channels connecting several granules.  相似文献   

13.
14.
Eight secretory cell types are identified in the clitellar epithelium of Eisenia foetida, of which five have been described in detail previously (i.e., the large granular, fine granular, metachromatic, orthochromatic, and small granular proteinacecus cells). The remaining three secretory cell types are mucus-producing cells specific to the clitellar epithelium (type 3), cells associated with the chaetal follicles (type 4), and cells that occur exclusively in the tubercula pubertatis (type 5). Type 3 cells secrete a mucus containing neutral and acid mucosubstances. Ultrastructurally, type 3 cells are characterized by membrane-bound globules 0.4 to 3.7 μm in diameter. The contents of the globules have a finely reticulate appearance. The secretion of type 4 cells contains a collagenlike protein and neutral and sulfated acid mucosubstances. Type 4 cell secretory granules are membrane bound and range in diameter from 0.8 to 1.6 μm. They contain large, electron-dense, spheroid cores which are surrounded by parallel orientated microfibrils 14 nm in diameter. Type 5 cells give variable responses to the histochemical techniques used in the present study. An elastinlike protein is detected in about half of the type 5 cells and acid and neutral mucosubstances in the remainder. At the ultrastructural level the secretory granules vary in shape from spheroid to polygonal. Their finely, electron-dense contents exhibit progressive swelling which results in the eventual rupture of the limiting membranes of the granules. The necks of types 3, 4, and 5 cells contain a peripheral ring of microtubles (20 ± 1 nm in diameter).  相似文献   

15.
The storage sites of the pituitary glycoprotein hormones were identified with the use of electron microscopic immunocytochemical techniques and antisera to the beta (beta) chains of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and thyroid-stimulating hormone (TSH). The TSH cells in normal rats is ovoid or angular and contains small granules 60-160 nm in diameter. In TSH cells hypertrophied 45 days after thyroidectomy, staining is in globular patches in granules or diffusely distributed in the expanded profiles of dilated rough endoplasmic reticulum. The gonadotrophs (FSH and LH cells) exhibited three different morphologies. Type I cells are ovoid with a population of large granules and a population of small granules. Staining for FSHbeta or LHbeta was intense and specific only in the large granules (diameter of 400 nm or greater). Type II cells are angular or stellate and contain numerous secretory granules averaging 200-220 nm in diameter. They predominate during stages in the estrous cycle when FSH or LH secretion is high. Type III cells look like adrenocorticotropin (ACTH) cells in that they are stellate with peripherally arranged granules. They generally stain only with anti-FSHbeta and their staining can not be abolished by the addition of 100 ng ACTH. In preliminary quantitative studies of cycling females, we found that on serial sections FSH cells and LH cells show similar shifts to a more angular population of cells during stages of active secretion. However, the shifts are not in phase with one another. Furthermore, there are at least 1.5 times more FSH cells than LH cells at all stages of the cycle. Our collection of serial cells shows that some cells (usually type I or II) stain for both gonadotropic hormones, whereas others (usually type II or III) contain only one.  相似文献   

16.
Summary In nine cell types of the adenohypophysis in untreated adult rainbow trout, histologically different activity phases, seasonal changes in activity, and the relation between certain cell types and the interrenal gland, thyroid or gonads were investigated by light and, occasionally, by electron microscopy. Special attention was given to the effect of social rank on the synthetic activity in adenohypophysial cells of trout kept in small groups in which a social hierarchy with one (light) dominant and several (dark) submissives is established.Cell types in the rostral pars distalis were azocarminophil (I) or amphiphil (II). Proximal pars distalis cell types were slightly basophil (IV), orangeophil (V), strongly basophil (VI) or chromophobe (VII). In the pars intermedia, cell types were amphiphil (VIII) or very slightly basophil (IX). Type III was a non-secretory supporting (?) cell.Histologically different activity phases abounded in type IV cells, which mainly occurred in the proximal pars distalis but were also found dispersed in the rostral pars distalis, the pars intermedia and the neurohypophysis.Influences of social rank were pronounced in type IV cells. Phases with a high synthetic activity were exclusively found in submissive animals, phases with a low synthetic activity occurred in dominants. As a positive relation existed between type IV cell activity and the social rank dependent activity of the interrenal gland, it was suggested that type IV cells produce ACTH.In (dominant) male trout treated with DOCG or ACTH, colloid-containing type IV cell phases, reflecting accumulation of the secretory product, were found. This supported the earlier suggestion that ACTH in the trout is produced in the basophil type IV cells and not, as reported in the literature, in cells comparable to type II.The author is greatly indebted to Miss M.C. Wentzel, Miss I. Stulen, Mr. J. Veening and Dr. J.G. van Rhijn for their help with histological techniques, interrenal cell measurements and statistical aspects  相似文献   

17.
Surface immunoglobulin allotypic determinants on rabbit spleen lymphoid cells are ultrastructurally localized by labeling with antiallotype antisera and soluble complexes of ferritin and rabbit antiferritin of a given allotype. At 0 °C surface Ig is visualized in patches on the membrane of 54% of the spleen lymphocytes examined. Four morphologically distinct categories of spleen lymphocytes display different amounts of labeled surface Ig. Type I cells are essentially identical to peripheral blood lymphocytes and demonstrate rapid endocytosis of surface Ig at 37 °C. Type II cells greater amounts of surface Ig, demonstrate little endocytosis, and are consistent with lymphoblast cells. Type III cells have the greatest amount of surface Ig, reveal some endocytosis, and are morphologically consistent with proplasmacytes and plasmablast cells. Type IV cells are immature plasma cells and have very little detectable surface Ig. The percentage of each cell type making up the labeled population is Type I, 28%; Type II, 21%; Type III, 50%, and Type IV, 1%. Immunoferritin labeled Ig determinants may be modulated from the surface of these cells at 37 °C by endocytosis and/or by shedding after reaction with anti-Ig antisera.  相似文献   

18.
The fine structure and differential cell count of blood and coelomic exudate leukocytes were studied with the aim to identify granulocytes from Ameiva ameiva, a lizard distributed in the tropical regions of the Americas. Blood leukocytes were separated with a Percoll cushion and coelomic exudate cells were obtained 24 h after intracoelomic thioglycollate injection. In the blood, erythrocytes, monocytes, thrombocytes, lymphocytes, plasma cells and four types of granulocytes were identified based on their morphology and cytochemistry. Types I and III granulocytes had round intracytoplasmic granules with the same basic morphology; however, type III granulocyte had a bilobued nucleus and higher amounts of heterochromatin suggesting an advance stage of maturation. Type II granulocytes had fusiformic granules and more mitochondria. Type IV granulocytes were classified as the basophil mammalian counterpart based on their morphology and relative number. Macrophages and granulocytes type III were found in the normal coelomic cavity. However, after the thioglycollate injection the number of type III granulocyte increased. Granulocytes found in the coelomic cavity were related to type III blood granulocyte based on the morphology and cytochemical localization of alkaline phosphatase and basic proteins in their intracytoplasmic granules. Differential blood leukocyte counts showed a predominance of type III granulocyte followed by lymphocyte, type I granulocyte, type II granulocyte, monocyte and type IV granulocyte. Taken together, these results indicate that types I and III granulocytes correspond to the mammalian neutrophils/heterophils and type II to the eosinophil granulocytes.  相似文献   

19.
The paired salivary glands of unfed adult Ornithodoros (Ornithodoros) moubata are composed of type I (agranular) and type II (granular) alveoli. Type I alveoli consis of one large central cell surrounded by peripheral cells having the morphology of fluid-transporting epithelia. Type II alveoli contain granular and agranular cells; the former are comprised of morphologically distinct types of cells (a, b, and c) containing granules of different structures and chemical composition with respect to polysaccharide and protein. The agranular cells are the interstitial and cap cells. Golgi bodies and rough endoplasmic reticulum (RER) are found in all granular cells and apparently are involved in granule formation. No appreciable structural changes were observed in type I alveoli during or after feeding. Type c cell granules are released before granules from types a and b cells and may contain anticoagulant substances that promote the blood flow of the host during the tick feeding. Although the cap cells are not structurally affected by feeding, interstitial cells are developed into transporting epithelia.  相似文献   

20.
An arbitrary classification scheme is presented for the thirteen distinct types of secretory cells distinguished within the central nervous system of Dermacentor variabilis by several specific and general neurosecretory staining techniques. Comparisons to classic arthropod neurosecretory cell types are made and the histochemical implications of the chromophilic response of various secretory products are discussed. Dermacentor cells of Types I, VII, IX and X may be considered neurosecretory on the basis of intracellular elaboration and discharge of secretory product. Type II, III, IV, V, VI, XI and XII cells are considered as putative neurosecretory cells although secretory products were detected only within the perikarya. The large Type XII cells are also similar to motor neurones reported from other arachnids. Cells of Types VIII and XIII appear to be glial elements. The secretory products of Type XIIIA are distributed within trabecular processes in the subperineurium. These products may play a trophic role or they may have some endocrine function as a form of “gliosecretion”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号