首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The activity of phosphate-activated glutaminase was increased in the kidney, liver and small intestine of rats made diabetic for 6 days with injection of streptozotocin (75 mg/kg body wt.). Insulin prevented this increase in all three tissues. Treatment with NaHCO3, to correct the acidosis that accompanies diabetes, prevented the increase in renal glutaminase activity, but not that in liver or small intestine. Chemically induced acidosis (NH4Cl solution as drinking water) or alkalosis (NaHCO3 solution as drinking water) increased and decreased, respectively, glutaminase activity in the kidney, but were without significant effect on the activity in liver and small intestine. The increase in glutaminase activity in the small intestine during diabetes was due to an overall increase in the size of this organ, and was only detectable when activity was expressed in terms of whole organ, not mucosal scrapings or isolated enterocytes. Prolonged diabetes (40 days) resulted in an even greater increase in the size and glutaminase activity of the small intestine. Despite this marked increase in capacity for glutamine catabolism, arteriovenous-difference measurements showed a complete suppression of plasma glutamine utilization by the small intestine during diabetes, confirming the report by Brosnan, Man, Hall, Colbourne & Brosnan [(1983) Am. J. Physiol. 235, E261-E265].  相似文献   

2.
1. In short- and long-term diabetic rats there is a marked increase in size of both the small intestine and colon, which was accompanied by marked decreases (P less than 0.001) and increases (P less than 0.001) in the arterial concentrations of glutamine and ketone bodies respectively. 2. Portal-drained viscera blood flow increased by approx. 14-37% when expressed as ml/100 g body wt., but was approximately unchanged when expressed as ml/g of small intestine of diabetic rats. 3. Arteriovenous-difference measurements for ketone bodies across the gut were markedly increased in diabetic rats, and the gut extracted ketone bodies at approx. 7 and 60 nmol/min per g of small intestine in control and 42-day-diabetic rats respectively. 4. Glutamine was extracted by the gut of control rats at a rate of 49 nmol/min per g of small intestine, which was diminished by 45, 76 and 86% in 7-, 21- and 42-day-diabetic rats respectively. 5. Colonocytes isolated from 7- or 42-day-diabetic rats showed increased and decreased rates of ketone-body and glutamine metabolism respectively, whereas enterocytes of the same animals showed no apparent differences in the rates of acetoacetate utilization as compared with control animals. 6. Prolonged diabetes had no effects on the maximal activities of either glutaminase or ketone-body-utilizing enzymes of colonic tissue preparations. 7. It is concluded that, although the epithelial cells of the small intestine and the colon during streptozotocin-induced diabetes exhibit decreased rates of metabolism of glutamine, such decreases were partially compensated for by enhanced ketone-body utilization by the gut mucosa of diabetic rats.  相似文献   

3.
M S Ardawi  M F Majzoub 《Biochimie》1988,70(6):749-755
1. The effect of starvation on the metabolism of gut glutamine and ketone-bodies of peak lactating, non-lactating and virgin rats was investigated. 2. The arterial blood ketone-body concentration was increased by approximately 7-, 6- and 13-fold in 48 h-starved virgin, non-lactating and lactating rats, respectively. 3. The arterial blood glutamine concentration was decreased by approximately 32% in 48 h-starved lactating rats (p less than 0.001). 4. The maximal activity of phosphate-dependent glutaminase was increased or decreased in the small intestine of fed or 48 h-starved peak-lactating rats, respectively. 5. Portal drained viscera blood flow increased by approximately 25% in peak-lactating rats. 6. Arteriovenous difference measurements for ketone-bodies across the gut of 48 h-starved rats showed an increase in net uptake of ketone-bodies by approximately 10-, 17- and 29-fold in virgin, non-lactating and lactating rats, respectively. 7. Glutamine was extracted by the gut of peak-lactating rats at a rate of 487 nmol/100 g of body wt. which was greater by approximately 33% (p less than 0.001) than that of virgin or non-lactating animals. In peak lactating rats, 48 h-starvation resulted in marked decreases in the rates of glutamine removal from the circulation (p less than 0.001) which was accompanied by decreased rates of release of glutamate, alanine and ammonia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
  • 1.1. The metabolism of glucose, glutamine and ketone-bodies was studied in the small intestine of rats after 5 days of hyperthyroidism.
  • 2.2. Portal-drained visceral bloodflow increased by 20.1% (P < 0.05) in hyperthyroid rats and was accompanied by a decrease in the arteriovenous concentration difference of glutamine (25.7%, P < 0.05), glutamate (22.0%, P < 0.05), alanine (20.9%, P < 0.05) and ammonia (20.6%, P < 0.05) and an increase in that of glucose (27.2%, P < 0.05), lactate (28.9%, P < 0.05) and ketone-bodies (163.2%, P< 0.001).
  • 3.3. The gut of hyperthyroid rats showed increased rates of extraction of glucose, lactate and ketone-bodies.
  • 4.4. Enterocytes isolated from hyperthyroid rats showed increased rates of utilization of glucose and ketone-bodies but that of glutamine were decreased.
  • 5.5. The maximal activities of hexokinase, 6-phosphofructokinase, pyruvate kinase, citrate synthase and oxoglutarate dehydrogenase were increased (by 13.7–36.2%) in intestinal mucosal scrapings of hyperthyroid rats, whereas the activity of glutaminase was decreased (22.1–31.4%).
  • 6.6. It is concluded that hyperthyroidism increases the rates of utilization of glucose and ketone-bodies but decreases that of glutamine (both in vivo and in vitro) by the epithelial cells of the small intestine.
  相似文献   

5.
6.
The effect of Walker 256 tumour growth on the metabolism of glucose and glutamine in the small intestine of rats was examined. Walker 256 tumour has been extensively used as an experimental model to induce cancer cachexia in rats. Walker 256 tumour growth decreased body weight and small intestine weight and length. The activities of glucose-6-phosphate dehydrogenase and phosphate-dependent glutaminase were reduced in the proximal, median and distal portions of the intestine. Glutamine oxidation was reduced in the proximal portion only. The decrease in glutaminase activity was not due to a low synthesis of the protein as indicated by Western blotting analysis. Hexokinase and citrate synthase activities were not changed by the tumour. These findings led us to postulate that tumour growth impairs glutamine metabolism of small intestine but the mechanism involved remains to be elucidated.  相似文献   

7.
The effect of acute changes in insulin concentrations in vivo on the absorption, transport and metabolism of glucose by rat small intestine in vitro was investigated. Within 2 min of the injection of normal anaesthetized rats with anti-insulin serum, lactate production and glucose metabolism were respectively diminished to 28% and 21% of normal and the conversion of glucose into lactate became quantitative. These changes correlated with the inhibition of two mucosal enzymes, namely the insulin-sensitive enzyme pyruvate dehydrogenase, and phosphofructokinase, which was shown by cross-over measurements to be the rate-limiting enzyme of glycolysis in mucosa. The proportion of glucose translocated unchanged from the luminal perfusate to the serosal medium was simultaneously increased from 45% to 80%. All the changes produced by insulin deficiency were completely reversed with 2 min when antiserum was neutralized by injection of insulin in vivo. The absorption and transport of 3-O-methylglucose were unaffected by insulin. It is concluded that glucose metabolism in rat small intestine is subject to short-term regulation by insulin in vivo and that glucose absorption and transport are regulated indirectly in response to changes in metabolism. Moreover, transport and metabolism compensate in such a way as to deliver the maximal 'effective' amount of glucose to the blood, whether as glucose itself or as lactate for hepatic gluconeogenesis.  相似文献   

8.
9.
This study examines the role of glucagon and insulin in the incorporation of (15)N derived from (15)N-labeled glutamine into aspartate, citrulline and, thereby, [(15)N]urea isotopomers. Rat livers were perfused, in the nonrecirculating mode, with 0.3 mM NH(4)Cl and either 2-(15)N- or 5-(15)N-labeled glutamine (1 mM). The isotopic enrichment of the two nitrogenous precursor pools (ammonia and aspartate) involved in urea synthesis as well as the production of [(15)N]urea isotopomers were determined using gas chromatography-mass spectrometry. This information was used to examine the hypothesis that 5-N of glutamine is directly channeled to carbamyl phosphate (CP) synthesis. The results indicate that the predominant metabolic fate of [2-(15)N] and [5-(15)N]glutamine is incorporation into urea. Glucagon significantly stimulated the uptake of (15)N-labeled glutamine and its metabolism via phosphate-dependent glutaminase (PDG) to form U(m+1) and U(m+2) (urea containing one or two atoms of (15)N). However, insulin had little effect compared with control. The [5-(15)N]glutamine primarily entered into urea via ammonia incorporation into CP, whereas the [2-(15)N]glutamine was predominantly incorporated via aspartate. This is evident from the relative enrichments of aspartate and of citrulline generated from each substrate. Furthermore, the data indicate that the (15)NH(3) that was generated in the mitochondria by either PDG (from 5-(15)N) or glutamate dehydrogenase (from 2-(15)N) enjoys the same partition between incorporation into CP or exit from the mitochondria. Thus, there is no evidence for preferential access for ammonia that arises by the action of PDG to carbamyl-phosphate synthetase. To the contrary, we provide strong evidence that such ammonia is metabolized without any such metabolic channeling. The glucagon-induced increase in [(15)N]urea synthesis was associated with a significant elevation in hepatic N-acetylglutamate concentration. Therefore, the hormonal regulation of [(15)N]urea isotopomer production depends upon the coordinate action of the mitochondrial PDG pathway and the synthesis of N-acetylglutamate (an obligatory activator of CP). The current study may provide the theoretical and methodological foundations for in vivo investigations of the relationship between the hepatic urea cycle enzyme activities, the flux of (15)N-labeled glutamine into the urea cycle, and the production of urea isotopomers.  相似文献   

10.
11.
The effects of chronic ethanol feeding on the small intestine were investigated in young rats. Rats were fed a nutritionally-adequate liquid diet, containing 36 per cent of total energy as ethanol (treated, n = 7), or isovolumetric amounts of the same diet in which ethanol was substituted by isocaloric glucose (controls, n = 7). After six weeks the wet weight and total tissue contents of protein, RNA and DNA were significantly reduced by 21 per cent, 23 per cent, 16 per cent and 28 per cent respectively, (p less than 0.014). Rates of protein synthesis were measured with L[4(3H)]phenylalanine and fractional rates (defined as the percentage of constituent tissue protein synthesised each hour, i.e. ks, % h-1) were calculated from the specific radioactivity of free phenylalanine in both tissue homogenates and plasma. Ethanol-feeding reduced ks by approx 10 per cent (p less than 0.181). The amount of protein synthesized unit-1 RNA was also reduced by approx 15 per cent (p less than 0.059) but the amount of protein synthesis unit-1 DNA was unaffected by ethanol-feeding (p less than 1.000). In contrast, the absolute rates of protein synthesis were reduced by approximately 30 per cent (p less than 0.022). It was concluded that, as the small intestine contributes to approx. 20-25 per cent of whole body synthesis these results may have an important effect on whole body nitrogen homeostasis and may have implications for the gastrointestinal effects of ethanol seen during chronic alcoholic abuse.  相似文献   

12.
Several factors (including diets, changes in intestinal fluora, and hormones) regulate postnatal intestinal growth and development. Based on the early studies involving modification of the adrenal gland, pituitary gland or hypothalamus, exogenous glucocorticoids and glucocorticoid receptor antagonists are now used to study glucocorticoid-mediated metabolism of amino acids in the small intestine. Findings from these studies indicate that physiological levels of glucocorticoids stimulate the catabolism of glutamine and proline for the synthesis of citrulline and arginine in enterocytes during weaning. In addition, increases in circulating levels of glucocorticoids enhance expression of arginase, proline oxidase and ornithine decarboxylase, as well as polyamine synthesis from arginine and proline in enterocytes. These actions of the hormones promote intestinal maturation and may have therapeutic effects on intestinal disease (e.g., necrotizing enterocolitis). Molecular aspects, species-specific effects, and developmental responsiveness to glucocorticoids should be taken into consideration in designing both experimental and clinical studies.  相似文献   

13.
The hormone, glucose-dependent insulinotropic peptide (GIP), is an important incretin regulator of the gastrointestinal tract. To investigate whether diet is important for the control of GIP gene expression in the small intestine, GIP messenger RNA (mRNA) levels were measured in rats during fasting and after glucose or fat administration. Ribonuclease protection analyses revealed that glucose and fat administration increased GIP mRNA levels by 4-fold and 2.5-fold, respectively, compared with the control, and that prolonged fasting decreased GIP mRNA levels to 44% of those of control animals. Glucose infusion increased plasma GIP levels and tended to stimulate an increase in the GIP hormone concentration in the mucosa of the small intestine. Administration of fat also stimulated an increase of plasma GIP levels but did not modify tissue GIP concentrations. Prolonged fasting tended to decrease plasma GIP levels, although GIP tissue concentrations did not change. These data suggest that dietary glucose or fat stimulates GIP synthesis and secretion, and that food deprivation causes a decrease in GIP synthesis and secretion. This regulation involves changes at the pretranslational level and is reflected by modifications of GIP mRNA expression.  相似文献   

14.
Absorption and metabolism of genistin in the isolated rat small intestine   总被引:7,自引:0,他引:7  
Andlauer W  Kolb J  Fürst P 《FEBS letters》2000,475(2):127-130
Uptake and intestinal metabolism of physiologically active genistin were studied in an ex vivo intestinal perfusion model; luminally applied concentrations were 5.9, 12.0, and 23.8 micromol/l. The intestinal absorption of genistin was 14.9% (+/-2.3, n=9), irrespective of the amounts applied. The majority of the absorbed genistin appeared as genistein glucuronide (11.6%), also recovered as the main metabolite on the luminal side (19.5%). Minor amounts of genistin (1.3%) and genistein (1.9%) were found on the vascular side, whereas 15.4% of applied genistin was luminally cleaved to yield genistein. Sulfate derivatives of genistein or genistin were not observed.  相似文献   

15.
1. The proportion of active (dephosphorylated) pyruvate dehydrogenase in rat heart mitochondria was correlated with total concentration ratios of ATP/ADP, NADH/NAD+ and acetyl-CoA/CoA. These metabolites were measured with ATP-dependent and NADH-dependent luciferases. 2. Increase in the concentration ratio of NADH/NAD+ at constant [ATP]/[ADP] and [acetyl-CoA]/[CoA] was associated with increased phosphorylation and inactivation of pyruvate dehydrogenase. This was based on comparison between mitochondria incubated with 0.4mM- or 1mM-succinate and mitochondria incubated with 0.4mM-succinate+/-rotenone. 3. Increase in the concentration ratio acetyl-CoA/CoA at constant [ATP]/[ADP] and [NADH][NAD+] was associated with increased phosphorylation and inactivation of pyruvate dehydrogenase. This was based on comparison between incubations in 50 micrometer-palmitotoyl-L-carnitine and in 250 micrometer-2-oxoglutarate +50 micrometer-L-malate. 4. These findings are consistent with activation of the pyruvate dehydrogenase kinase reaction by high ratios of [NADH]/[NAD+] and of [acetyl-CoA]/[CoA]. 5. Comparison between mitochondria from hearts of diabetic and non-diabetic rats shows that phosphorylation and inactivation of pyruvate dehydrogenase is enhanced in alloxan-diabetes by some factor other than concentration ratios of ATP/ADP, NADH/NAD+ or acetyl-CoA/CoA.  相似文献   

16.
1. In the presence of near-physiological glutamine concentrations, exposure of perfused rat liver to hypotonic perfusion media switched glutamine balance across the liver from net release to net uptake. This was due to both stimulation of flux through glutaminase and inhibition of flux through glutamine synthetase. Conversely, during exposure to hypertonic media, net glutamine release from the liver increased due to inhibition of glutaminase flux and slight stimulation of flux through glutamine synthetase. The effect of perfusate osmolarity on glutaminase flux was observed at an NH4Cl concentration (0.5 mM) sufficient for near-maximal ammonia stimulation of glutaminase. This indicates the involvement of different mechanisms of glutaminase flux control by extracellular osmolarity changes and ammonia. The effects of anisotonicity on flux through glutamine-metabolizing enzymes were fully reversible. Glutamine (0.6 mM) stimulated urea synthesis from NH4Cl (0.5 mM) during hypotonic and normotonic conditions. 2. Exposure to hypotonic and hypertonic media led, after initial liver-cell swelling and shrinkage, respectively to volume-regulatory K+ fluxes which largely restored the initial liver-cell volume despite the continuing osmotic challenge. Even after completion of cell-volume regulatory K+ fluxes, the effects of perfusate osmolarity on hepatic glutamine metabolism persisted. This indicates that in anisotonicity the liver cell is left in an altered metabolic state, even after completion of volume-regulatory responses. 3. During perfusion with isotonic media, addition of glutamine (3 mM) led to an increase of liver mass by about 4% within 2 min, which was accompanied by a net K+ uptake by the liver. Thereafter, the new steady state of increased liver mass was maintained throughout glutamine infusion. When the liver mass had reached this new steady state, a net release of K+ from the liver of about 3 mumol/g liver was observed during the following 10 min. Withdrawal of glutamine was followed by a slow reuptake of K+ and the liver mass returned to its initial value. Following exposure to glutamine (3 mM), the intracellular glutamine concentration (as calculated from glutamine tissue levels, taking into account the extracellular space determined with the [3H]inulin technique) rose from about 1 mM to 30-35 mM within about 12 min, indicating a 10-12-fold concentrative uptake of glutamine into the liver cells and an osmotic challenge for the hepatocyte. When intracellular glutamine had reached its steady-state concentration, net K+ efflux from the liver was also terminated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The effect of sodium orthovanadate on the absorption, transmural transport and metabolism of glucose was studied by perfusion of isolated loops of rat jejunum in vitro. The presence of 1 mM vanadate in the serosal medium diminished absorption from 539 +/- 19 (n = 12) to 246 +/- 19 (P less than 0.001) mumol/h per g dry weight and transmural transport from 333 +/- 17 to 14 +/- 19 (P less than 0.001) mumol/h per g dry weight, whereas glucose utilisation was unaffected. The rate of release of lactate into the serosal medium was also diminished from 168 +/- 14 to 75 +/- 5 mumol/h per g dry weight (P less than 0.001). The observed rates were linear with respect to time and vanadate was effective within 5 min. In contrast, the rate of release of lactate into the luminal perfusate was strongly enhanced. Moreover, the progress curve showed a positive transient with an apparent lag time of 18.0 +/- 0.3 min, during which the rate increased to a value 9.2-times that of the control. Under the final steady-state conditions, the ratio of mucosal to serosal lactate production was 5.2 +/- 0.2 compared with 0.25 +/- 0.06 for the control, so that the effect of vanadate was to reverse the vectorial disposition of lactate. The concentration dependence of the effect of vanadate on absorption and metabolism was similar to that observed for the inhibition by vanadate of Na+/K+-ATPase activity in mucosal homogenates. The results are discussed in terms of the dissipation of transmembrane Na+ gradients as a result of the inhibition of the Na+/K+-ATPase.  相似文献   

18.
Glucose and glutamine metabolism in rat thymocytes.   总被引:1,自引:3,他引:1  
The metabolism of glucose and glutamine in freshly prepared resting and concanavalin A-stimulated rat thymocytes was studied. Concanavalin A addition enhanced uptake of both glucose and glutamine and led to an increase in oxidative degradation of both substrates to CO2. With variously labelled [14C]glucose, it was shown that the pathways of glucose dissimilation were equally stimulated by the mitogen. A disproportionately large percentage of the extra glucose taken up was converted into lactate, but concanavalin A also caused an increase in the oxidation of pyruvate as judged by the enhanced release of 14CO2 from [2-14C]-, [3,4-14C]- and [6-14C]-glucose. Addition of glutamine did not affect glucose metabolism. The major end products of glutamine metabolism by resting and mitogen-stimulated rat thymocytes were glutamate, aspartate, CO2 and NH3. Virtually no lactate was formed from glutamine. Concanavalin A enhanced the formation of all end products except glutamate, indicating that more glutamine was metabolized beyond the stage of glutamate in the mitogen-activated cells. Addition of glucose caused a significant decrease in the rates of glutamine utilization and conversion into aspartate and CO2 in the absence and in the presence of concanavalin A. In the presence of glucose, almost all nitrogen of the metabolized glutamine was accounted for as NH3 released via the glutaminase and/or glutamate dehydrogenase reactions. In the absence of glucose, part (18%) of the glutamine nitrogen was metabolized by the resting and to a larger extent (38%) by the mitogen-stimulated thymocytes via a transaminase or amidotransferase reaction.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号