首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D. GILLILAND, A. LI WAN PO AND E. SCOTT. 1992. The antimicrobial effects of methyl and propyl parabens are investigated, with Escherichia coli as test organism, with a view to determining whether the parabens act synergistically. At appropriate concentrations, the parabens killed E. coli cells according to first order kinetics and the bactericidal effects were quantified by the first order kill rate constants. Combinations of methyl or propyl parabens, at concentrations which slow down or inhibit bacterial growth when used singly, produced definite kill. In this sense, the parabens are therefore synergistic since in combination they produce an effect which is not observed when they are used singly. This effect is not true synergism as shown by the results of our experiments with a factorial design. Analysis of variance indicated no significant interaction between the two parabens.  相似文献   

2.
The effect of temperature on the kill rate of Escherichia coli by methyl and propyl parabens was studied. The kill kinetics was first order. It was shown that the Arrhenius equation provided a good model for describing the relationship between the first order rate constant and the temperature. The activation energy was found to be 274 kJ/mol for exponential phase cells and 168 kJ/mol for stationary phase cells. Exponential phase cells were much more susceptible to the lethal effects of the parabens than were the stationary phase cells. For example, at 34 degrees C stationary phase cells, in chemically defined media, had a kill rate constant of 0.072/h while the corresponding value for exponential phase cells was 0.238/h. In water the rate of kill for exponential phase cells was even faster giving a rate constant of 5.25/h at 34 degrees C. Non-isothermal kinetic testing was not found to be useful for modelling bacterial kill kinetics because we could not achieve the precision required in bacterial enumeration.  相似文献   

3.
D. GILLILAND, A. LI WAN PO AND E. SCOTT. 1992. The effect of temperature on the kill rate of Escherichia coli by methyl and propyl parabens was studied. The kill kinetics was first order. It was shown that the Arrhenius equation provided a good model for describing the relationship between the first order rate constant and the temperature. The activation energy was found to be 274 kJ/mol for exponential phase cells and 168 kJ/mol for stationary phase cells. Exponential phase cells were much more susceptible to the lethal effects of the parabens than were the stationary phase cells. For example, at 34°C stationary phase cells, in chemically defined media, had a kill rate constant of 0.072/h while the corresponding value for exponential phase cells was 0.238/h. In water the rate of kill for exponential phase cells was even faster giving a rate constant of 5.25/h at 34°C. Non-isothermal kinetic testing was not found to be useful for modelling bacterial kill kinetics because we could not achieve the precision required in bacterial enumeration.  相似文献   

4.
Parabens (alkyl esters of p-hydroxybenzoic acid) are widely used as antimicrobial preservatives in cosmetic products, pharmaceuticals, and food processing. However, weak estrogenicity of some parabens has been revealed from several studies. Human exposure to parabens may be assessed by measuring the conjugated or free species of these compounds or their metabolites in urine. We have developed a method using on-line solid phase extraction-high performance liquid chromatography-isotope dilution tandem mass spectrometry with peak focusing to measure the urinary concentrations of methyl, ethyl, propyl, n- and iso- butyl, and benzyl parabens. This method has good reproducibility and accuracy with detection limits for all analytes below 0.2ng/mL in 100microL of urine, and permits quick and accurate analysis of a large number of samples in epidemiologic studies for assessing the prevalence of human exposure to parabens. Using this method, we detected methyl, ethyl, and propyl parabens, mostly as conjugated species, in 22 urine samples collected from anonymous adults.  相似文献   

5.
Summary The antimicrobial activity of the soluble potassium salts of methyl, ethyl, propyl, and butyl parabens were evaluated to determine whether they would be more effective than their respective parabens (esters ofp-hydroxybenzoic acids). The potassium salts of the methyl and ethyl parabens as well as methyl and ethyl parabens were microbiocidal against the fungusAspergillus niger and five bacteria, whereas the potassium salts of propyl and butyl parabens and their respective parabens were not microbiocidal against all the test organisms. In the presence of several ingredients frequently used in pharmaceutical and cosmetic formulations, ethylenediaminetetraacetate (EDTA) and magnesium hydroxide did not interfere with the antimicrobial activity of the potassium salts of parabens and appeared to be microbiocidal against three of four test organisms. Simethicone and Tween 80 interfered with the antimicrobial activity of the preservatives. At pH 4–6, the potassium salt of butyl paraben, the only preservative tested, was active against more organisms than at pH 7–8. Overall, the highly soluble potassium salts of parabens showed microbiocidal activity against more of the test organisms than the less soluble parabens.  相似文献   

6.
The effect of methyl, propyl and butyl esters of p -hydroxybenzoic acid on DNA and RNA synthesis has been tested in toluenized cells of Escherichia coli and Bacillus subtilis. Both RNA and DNA synthesis of these bacteria were inhibited. The inhibitory concentrations were higher than those previously reported for growth inhibition. Protein synthesis in cell-free extracts (S-30 fraction) of B. subtilis was even more sensitive to parabens than DNA and RNA synthesis, while protein synthesis in Esch. coli was largely unaffected.  相似文献   

7.
The effect of methyl, propyl and butyl esters of p-hydroxybenzoic acid on DNA and RNA synthesis has been tested in toluenized cells of Escherichia coli and Bacillus subtilis. Both RNA and DNA synthesis of these bacteria were inhibited. The inhibitory concentrations were higher than those previously reported for growth inhibition. Protein synthesis in cell-free extracts (S-30 fraction) of B. subtilis was even more sensitive to parabens than DNA and RNA synthesis, while protein synthesis in Esch. coli was largely unaffected.  相似文献   

8.
9.
A broad variety of natural parabens, including four novel structures and known ethyl and butyl parabens, were obtained from culture of a Microbulbifer sp. bacterial strain isolated from the temperate calcareous marine sponge Leuconia nivea (Grant 1826). Their structures were elucidated from spectral analysis, including mass spectrometry and 1D and 2D nuclear magnetic resonance. Their antimicrobial activity evaluated against Staphylococcus aureus was characterized by much higher in vitro activity of these natural paraben compounds 3–9 than commercial synthetic methyl and propyl parabens, usually used as antimicrobial preservatives. Compounds 4 and 9 revealed a bacteriostatic effect and compounds 6 and 7 appeared as bactericidal compounds. Major paraben compound 6 was also active against Gram positive Bacillus sp. and Planococcus sp. sponge isolates and was detected in whole sponge extracts during all seasons, showing its persistent in situ production within the sponge. Moreover, Microbulbifer sp. bacteria were visualized in the sponge body wall using fluorescence in situ hybridization with a probe specific to L4-n2 phylotypes. Co-detection in the sponge host of both paraben metabolites and Microbulbifer sp. L4-n2 indicates, for the first time, production of natural parabens in a sponge host, which may have an ecological role as chemical mediators.  相似文献   

10.
Kamaraju K  Sukharev S 《Biochemistry》2008,47(40):10540-10550
Lipid bilayers provide a natural anisotropic environment for membrane proteins and can serve as apolar reservoirs for lipid-derived second messengers or lipophilic drugs. Partitioning of lipophilic agents changes the lateral pressure distribution in the bilayer, affecting integral proteins. p-Hydroxybenzoic acid esters (parabens) are amphipathic compounds widely used as food and cosmetics preservatives, but the mechanisms of their broad antibacterial action are unknown. Here we describe effects of ethyl, propyl, and butyl parabens on the gating of the bacterial mechanosensitive channel of small conductance (MscS) and compare them with the surface activity and lateral pressure changes measured in lipid monolayers in the presence of these substances. Near the bilayer-monolayer equivalence pressure of 35 mN/m, ethyl, propyl, or butyl paraben present in the subphase at 1 mM increased the surface pressure of the monolayer by 5, 12.5, or 20%, respectively. No spontaneous activation of MscS channels was observed in patch-clamp experiments with parabens added from either the cytoplasmic or periplasmic side. Increasing concentrations of parabens on the cytoplasmic side of excised patches shifted activation curves of MscS toward higher tensions. A good correlation between the pressure increases in monolayers and shifts in activation midpoints in patch-clamp experiments suggested that the more hydrophobic parabens partition more strongly into the lipid and exert larger effects on channel gating through changes in lateral pressure. We show that cytoplasmically presented ethyl or butyl parabens both hasten the process of desensitization of MscS and influence inactivation differently. The higher rate of desensitization is likely due to increased lateral pressure in the cytoplasmic leaflet surrounding the gate. Neither of the parabens strongly affects the rate of recovery and does not seem to penetrate the TM2-TM3 interhelical clefts in MscS. We conclude that the bacterial mechanosensitive channel MscS provides a sensitive readout of lateral membrane pressure exerted by amphipathic molecules but may not be the primary target for the parabens in their antimicrobial activity.  相似文献   

11.
BACKGROUND: Parabens are widely used preservatives in cosmetics and pharmaceutical products, and approved as food additives. Parabens have been considered safe for these uses for many years. Recently, adverse effects on male reproductive parameters in rats have been reported when parabens were given orally for 8 weeks starting at three weeks of age. Our studies used two representative parabens, methyl‐ and butylparaben, to try to replicate these studies and thereby evaluate potential reproductive effects in male Wistar rats. METHODS: Diets containing 0, 100, 1000 or 10,000 ppm of either butyl‐ or methylparaben were fed to male rats for eight weeks. Rats were 22 days of age at the start of exposure. Parameters evaluated included organ weights, histopathology of reproductive tissues, sperm production, motility, morphology and reproductive hormone levels (butylparaben only). RESULTS: None of the parameters evaluated for either paraben showed compound‐ or dosage‐dependent adverse effects. Metabolism experiments of butylparaben indicate that it is rapidly metabolized by non‐specific esterases to p‐hydroxybenzoic acid and butanol, neither of which is estrogenic. CONCLUSIONS: Exposure to methyl‐ or butylparaben in the diet for eight weeks did not affect any male reproductive organs or parameters at exposures as high as 10,000 ppm, corresponding to a mean daily dose of 1,141.1±58.9 or 1,087.6±67.8 mg/kg/day for methyl‐ and butylparaben, respectively. The rapid metabolism of parabens by esterases probably explains why these weakly estrogenic substances elicit no in vivo effects when administered by relevant exposure routes (i.e., topical and oral). Birth Defects Research (Part B) 2008. 2008 Wiley‐Liss, Inc.  相似文献   

12.
The esterase PrbA from Enterobacter cloacae strain EM has previously been shown to confer additional resistance to the esters of 4-hydroxybenzoic acid (parabens) to two species of Enterobacter. The PrbA protein has been purified from E. cloacae strain EM using a three-step protocol resulting in a 60-fold increase in specific activity. The molecular mass of the mature enzyme was determined to be 54,619 +/- 1 Da by mass spectrometry. It is highly active against a series of parabens with alkyl groups ranging from methyl to butyl, with K(m) and V(max) values ranging from 0.45 to 0.88 mM and 0.031 to 0.15 mM/min, respectively. The K(m) and V(max) values for p-nitrophenyl acetate were 3.7 mM and 0.051 mM/min. PrbA hydrolyzed a variety of structurally analogous compounds, with activities larger than 20% relative to propyl paraben for methyl 3-hydroxybenzoate, methyl 4-aminobenzoate, or methyl vanillate. The enzyme showed optimum activity at 31 degrees C and at pH 7.0. PrbA was able to transesterify parabens with alcohols of increasing chain length from methanol to n-butanol, achieving 64% transesterification of 0.5 mm propyl paraben with 5% methanol within 2 h. PrbA was inhibited by 1-chloro-3-tosylamido-4-phenyl-2-butanone and 1-chloro-3-tosylamido-7-amino-2-heptanone (TLCK), with K(i) values of 0.29 and 0.20 mM, respectively, and was irreversibly inhibited by Diisopropyl fluorophosphate (DFP) or diethyl pyrocarbonate. The stoichiometry of addition of DFP to the enzyme was 1:1 and only 1 TLCK molecule was found in TLCK-modified enzyme, as measured by mass spectrometry. Analysis of the tryptic digest of the DFP-modified PrbA demonstrated that the addition of a DFP molecule occurred at Ser-189, indicating the location of the active serine.  相似文献   

13.
Irreversible paraben inhibition of glycolysis by Streptococcus mutans GS-5   总被引:1,自引:0,他引:1  
Parabens were found to inhibit irreversibly glycolysis by the cariogenic dental plaque bacterium Streptococcus mutans GS-5 and to decrease the capacity of the bacterium to lower the pH in dense cell suspensions containing excess glucose. The hierarchy of effectiveness was butyl > propyl > ethyl > methyl paraben. Results of studies of the nature of glycolytic inhibition by butyl paraben indicated that it could act at millimolar concentrations as an irreversible inhibitor of the phosphotransferase system for sugar uptake and was lethal for the bacterium at these same levels. Butyl paraben acted also as a reversible inhibitor of the F-ATPase of the organism. Overall, it appeared that the lethal actions of parabens can be interpreted at least in part as due to irreversible damage to key enzymes, such as those of the phosphotransferase system.  相似文献   

14.
Enterobacter cloacae strain EM was isolated from a commercial dietary mineral supplement stabilized by a mixture of methylparaben and propylparaben. It harbored a high-molecular-weight plasmid and was resistant to high concentrations of parabens. Strain EM was able to grow in liquid media containing similar amounts of parabens as found in the mineral supplement (1,700 and 180 mg of methyl and propylparaben, respectively, per liter or 11.2 and 1.0 mM) and in very high concentrations of methylparaben (3,000 mg liter(-1), or 19.7 mM). This strain was able to hydrolyze approximately 500 mg of methyl-, ethyl-, or propylparaben liter(-1) (3 mM) in less than 2 h in liquid culture, and the supernatant of a sonicated culture, after a 30-fold dilution, was able to hydrolyze 1,000 mg of methylparaben liter(-1) (6.6 mM) in 15 min. The first step of paraben degradation was the hydrolysis of the ester bond to produce 4-hydroxybenzoic acid, followed by a decarboxylation step to produce phenol under aerobic conditions. The transformation of 4-hydroxybenzoic acid into phenol was stoichiometric. The conversion of approximately 500 mg of parabens liter(-1) (3 mM) to phenol in liquid culture was completed within 5 h without significant hindrance to the growth of strain EM, while higher concentrations of parabens partially inhibited its growth.  相似文献   

15.
The new gene prbA encodes an esterase responsible for the hydrolysis of the ester bond of parabens in Enterobacter cloacae strain EM. This gene is located on the chromosome of strain EM and was cloned by several PCR approaches. The prbA gene codes for an immature protein of 533 amino acids, the first 31 of which represent a proposed signal peptide yielding a mature protein of a putative molecular mass of 54.6 kDa. This enzyme presents analogies with other type B carboxylesterases, mainly of eukaryotic origin. The cloning and expression of the prbA gene in a strain of Escherichia coli previously unable to hydrolyze parabens resulted in the acquisition of a hydrolytic capacity comparable to the original activity of strain EM, along with an increased resistance of the transformed strain to methyl paraben. The presence of homologues of prbA was tested in additional ubiquitous bacteria, which may be causative factors in opportunistic infections, including Enterobacter gergoviae, Enterobacter aerogenes, Pseudomonas agglomerans, E. coli, Pseudomonas aeruginosa, and Burkholderia cepacia. Among the 41 total strains tested, 2 strains of E. gergoviae and 1 strain of Burkholderia cepacia were able to degrade almost completely 800 mg of methyl paraben liter(-1). Two strains of E. gergoviae, named G1 and G12, contained a gene that showed high homology to the prbA gene of E. cloacae and demonstrated comparable paraben esterase activities. The significant geographical distance between the locations of the isolated E. cloacae and E. gergoviae strains suggests the possibility of an efficient transfer mechanism of the prbA gene, conferring additional resistance to parabens in ubiquitous bacteria that represent a common source of opportunistic infections.  相似文献   

16.
1. Esters of gamma-guanidino-l-alpha-toluene-p-sulphonamidobutyric acid (alpha-N-toluene-p-sulphonyl-l-norarginine) have been synthesized and shown to be hydrolysed by bovine trypsin and thrombin. As substrates for these enzymes, they were better than esters of alpha-N-toluene-p-sulphonyl-l-homoarginine or of alpha-N-toluene-p-sulphonyl-l-ornithine but not as good as esters of alpha-N-toluene-p-sulphonyl-l-arginine. 2. With trypsin as catalyst, the methyl and propyl esters are hydrolysed at the same rate at high substrate concentrations and hence deacylation of the acyl-enzyme appears to be rate-determining. In the presence of thrombin, however, the methyl ester is hydrolysed much faster than the n-propyl ester. 3. The variation of k(0) with pH indicates that groups with pK((app.)) values of 7.05+/-0.02 and 6.53+/-0.02 must be dissociated in trypsin and thrombin respectively for hydrolysis to proceed. 4. Activation constants have been determined for the trypsin-catalysed hydrolysis of methyl gamma-guanidino-l-alpha-toluene-p-sulphonamidobutyrate and have been compared with the corresponding constants for the hydrolysis of homologous substrates. 5. Cholate increases k(0) and decreases K(m); the effects are more pronounced with thrombin than with trypsin.  相似文献   

17.
Four parabens (methyl, n-butyl, benzyl and isobutylparaben) were theoretically studied in order to evaluate their estrogenic activity through simplified models. The experimental structure of the human estrogen receptor ligand-binding domain in complex with 17β-estradiol was used as the starting point to construct the models. The complex between 17β-estradiol and three fragments of the estrogenic receptor (Arg, Glu and His), resulted in a reasonable simplified model of interaction. The replacement of 17-β-estradiol by parabens was evaluated by conformational analyses and interaction energy calculations at BHandHLYP/cc-PVTZ(-f)+ level of theory. According with the calculated interaction energies, methylparaben is the paraben with higher estrogenic activity, which is in agreement with experimental studies of extraction and quantification of parabens in tumors. The antibacterial activity of parabens was also explored considering the formation of potassium salts in the phenolic OH groups. From the obtained relative energy values, methylparaben is the most active preservative.  相似文献   

18.
Summary: Various bacteria capable of degrading aromatic ring structures were unable to utilize gallic acid, methyl, ethyl or propyl gallates as sole carbon sources for growth when tested in liquid and solid media. A bacterial isolate was obtained which degraded gallic acid but not methyl, ethyl or propyl gallates, although ellagic acid, a major spontaneous degradation product of the gallate esters, was utilized to a limited degree.  相似文献   

19.
Enterobacter cloacae strain EM was isolated from a commercial dietary mineral supplement stabilized by a mixture of methylparaben and propylparaben. It harbored a high-molecular-weight plasmid and was resistant to high concentrations of parabens. Strain EM was able to grow in liquid media containing similar amounts of parabens as found in the mineral supplement (1,700 and 180 mg of methyl and propylparaben, respectively, per liter or 11.2 and 1.0 mM) and in very high concentrations of methylparaben (3,000 mg liter−1, or 19.7 mM). This strain was able to hydrolyze approximately 500 mg of methyl-, ethyl-, or propylparaben liter−1 (3 mM) in less than 2 h in liquid culture, and the supernatant of a sonicated culture, after a 30-fold dilution, was able to hydrolyze 1,000 mg of methylparaben liter−1 (6.6 mM) in 15 min. The first step of paraben degradation was the hydrolysis of the ester bond to produce 4-hydroxybenzoic acid, followed by a decarboxylation step to produce phenol under aerobic conditions. The transformation of 4-hydroxybenzoic acid into phenol was stoichiometric. The conversion of approximately 500 mg of parabens liter−1 (3 mM) to phenol in liquid culture was completed within 5 h without significant hindrance to the growth of strain EM, while higher concentrations of parabens partially inhibited its growth.  相似文献   

20.
The effects of caffeine and 3-aminobenzamide (3-AB) on Syrian baby hamster kidney cells treated with DNA-alkylating agents and ultraviolet-light suggest that two different DNA-repair mechanisms are involved. Both these agents enhanced the cell kill after methyl methanesulfonate (MMS) treatment. However, enhanced lethality was observed only with caffeine post-treatment when cells were exposed to nitrogen mustard (HN2) or ultraviolet light (UV); 3-AB did not appreciably change cell killing by these agents. With MMS-treated cultures, the effect of caffeine was maximal about 16 h later. The effect of 3-AB on the other hand, was exerted during the first 4 h after exposure to MMS. Caffeine's effect on cell survival could be abolished by low concentrations of cycloheximide, whereas 3-AB's effect could not. Furthermore, the G2 block in cell cycle progression, after MMS treatment, was not observed if the cells were post-treated with caffeine. In the presence of 3-AB, MMS-treated cells were arrested in G2 phase at a much earlier time compared to cells not treated with 3-AB. Finally caffeine post-treatment produced a 10-fold increase in nuclear fragmentation in MMS-treated cells. 3-AB did not cause nuclear fragmentation by itself but further enhanced the nuclear fragmenting effect of caffeine when both agents were present during the posttreatment. Therefore, we propose that 3-AB and caffeine each prevent a different repair mechanism from being effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号