首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
《The Journal of cell biology》1989,109(6):2841-2851
Before addition of cAMP, Dictyostelum amoebae rapidly translocating in buffer are elongate, exhibit expansion zones primarily at the anterior end and filamentous actin (F-actin) localization primarily in the anterior pseudopodia. Intracellular particle movement is primarily in the anterior direction, and the average rate of particle movement is roughly five times the rate of cellular translocation. Within seconds after the addition of 10(-6)M cAMP, there is a dramatic suppression of cellular translocation, an inhibition of pseudopod formation, a freeze in cellular morphology, a dramatic depression in intracellular particle movement, loss of F-actin localization in pseudopodia concomitant with relocalization of F-actin in the general cytoplasmic cortex under the plasma membrane, and a doubling of F-actin content. After 10 s, expansion zones are again visible at the cell perimeter, but they no longer are localized in the original anterior portion of the cell. There is a slight rebound in particle movement after 10 s, but particles with persistent tracks now show no directionality towards the original anterior portion of the cell, as they did before cAMP addition. Finally, in parallel with the resumption of peripheral expansion and the small rebound in particle movement, there is a decrease in total cellular F-actin to the untreated level. The pattern of microtubule organization is unaffected by the addition of cAMP.  相似文献   

2.
Gprotein-coupled receptor (GPCR) signaling mediates a balance of excitatory and inhibitory activities that regulate Dictyostelium chemosensing to cAMP. The molecular nature and kinetics of these inhibitors are unknown. We report that transient cAMP stimulations induce PIP3 responses without a refractory period, suggesting that GPCR-mediated inhibition accumulates and decays slowly. Moreover, exposure to cAMP gradients leads to asymmetric distribution of the inhibitory components. The gradients induce a stable accumulation of the PIP3 reporter PHCrac-GFP in the front of cells near the cAMP source. Rapid withdrawal of the gradient led to the reassociation of G protein subunits, and the return of the PIP3 phosphatase PTEN and PHCrac-GFP to their pre-stimulus distribution. Reapplication of cAMP stimulation produces a clear PHCrac-GFP translocation to the back but not to the front, indicating that a stronger inhibition is maintained in the front of a polarized cell. Our study demonstrates a novel spatiotemporal feature of currently unknown inhibitory mechanisms acting locally on the PI3K activation pathway.  相似文献   

3.
S Eriksen  S Olsnes  K Sandvig    O Sand 《The EMBO journal》1994,13(19):4433-4439
Receptor-dependent translocation of diphtheria toxin across the surface membrane of Vero cells was studied using patch clamp techniques. Translocation was induced by exposing cells with surface-bound toxin to low pH. Whole cell current and voltage clamp recordings showed that toxin translocation was associated with membrane depolarization and increased membrane conductance. The conductance increase was voltage independent, with a reversal potential of approximately 15 mV. This value was unaffected by changing the Cl- gradient across the membrane and microfluorometric measurements showed that the cytosolic Ca2+ concentration was only marginally elevated by the translocation. The conductance increase is thus mainly due to monovalent cations. Exposing outside-out and cell-attached patches with bound toxin to low pH induced a new type of ion channel in the membrane. The channel current was inward at negative membrane potentials and the single channel conductance was approximately 30 pS. This value is about three times larger than for receptor-independent channels induced by diphtheria toxin or toxin fragments in artificial lipid membranes.  相似文献   

4.
Multiple Forms of Endocytosis In Bovine Adrenal Chromaffin Cells   总被引:14,自引:1,他引:13       下载免费PDF全文
We studied endocytosis in chromaffin cells with both perforated patch and whole cell configurations of the patch clamp technique using cell capacitance measurements in combination with amperometric catecholamine detection. We found that chromaffin cells exhibit two relatively rapid, kinetically distinct forms of stimulus-coupled endocytosis. A more prevalent “compensatory” retrieval occurs reproducibly after stimulation, recovering an approximately equivalent amount of membrane as added through the immediately preceding exocytosis. Membrane is retrieved through compensatory endocytosis at an initial rate of ~6 fF/s. Compensatory endocytotic activity vanishes within a few minutes in the whole cell configuration. A second form of triggered membrane retrieval, termed “excess” retrieval, occurs only above a certain stimulus threshold and proceeds at a faster initial rate of ~248 fF/s. It typically undershoots the capacitance value preceding the stimulus, and its magnitude has no clear relationship to the amount of membrane added through the immediately preceding exocytotic event. Excess endocytotic activity persists in the whole cell configuration. Thus, two kinetically distinct forms of endocytosis coexist in intact cells during perforated patch recording. Both are fast enough to retrieve membrane after exocytosis within a few seconds. We argue that the slower one, termed compensatory endocytosis, exhibits properties that make it the most likely mechanism for membrane recycling during normal secretory activity.  相似文献   

5.
Kinetics of cell detachment: peeling of discrete receptor clusters.   总被引:4,自引:0,他引:4       下载免费PDF全文
M D Ward  M Dembo    D A Hammer 《Biophysical journal》1994,67(6):2522-2534
Clustering of cell surface adhesion receptors is an essential step in the development of focal contacts, specialized cell-substrate attachment sites where receptors are simultaneously linked to extracellular ligand and cytoskeletal proteins. Previously, we examined the effect of receptor clustering on attachment strength. Here, we employ the numerical methodology developed by Dembo and colleagues (Dembo, M., D.C. Torney, K. Saxman, and D. Hammer. 1988. Proc. R. Soc. Lond. B. 234:55-83) to investigate the kinetics of cell detachment when receptors are clustered into discrete patches. We show that the membrane peeling velocity decreases if receptors are clustered within a patch located inside the contact region. Peeling of clusters is influenced by the chemistry and mechanics of receptor-ligand bonds within the patch. Detachment is also prohibited if the applied tension equals the critical tension of the patch, unless the patch length is small compared with the boundary length over which membrane bending occurs, in which case the patch will peel. Peeling of these short patches only occurs when the mechanical stiffness of clustered bonds is within an optimal range. We compare our model predictions with experimental measurements of T lymphocyte detachment from ICAM-1 substrates. We demonstrate that if discrete patches of receptors are present, detachment occurs through intervals of slow and fast peeling, similar to the dynamics of T lymphocyte peeling, indicating that clustering of LFA-1 receptors is one possible explanation for the observed detachment kinetics in this system.  相似文献   

6.
The effect of cAMP on Ca(2+)-permeable channels from Arabidopsis thaliana leaf guard cell and mesophyll cell protoplasts was studied using the patch clamp technique. In the whole cell configuration, dibutyryl cAMP was found to increase a hyperpolarization-activated Ba(2+) conductance (I(Ba)). The increase of I(Ba) was blocked by the addition of GdCl(3). In excised outside-out patches, the addition of dibutyryl cAMP consistently activated a channel with particularly fast gating kinetics. Current/voltage analyses indicated a single channel conductance of approximately 13 picosiemens. In patches where we measured some channel activity prior to cAMP application, the data suggest that cAMP enhances channel activity without affecting the single channel conductance. The cAMP activation of these channels was reversible upon washout. The results obtained with excised patches indicate that the cAMP-activated I(Ba) seen in the whole cell configuration could be explained by a direct effect of cAMP on the Ca(2+) channel itself or a close entity to the channel. This work represents the first demonstration using patch clamp analysis of the presence in plant cell membranes of an ion channel directly activated by cAMP.  相似文献   

7.
GbpC is a multidomain Roco protein in Dictyostelium, involved in transduction of intracellular cGMP that is produced by chemotactic signals. We have shown previously that cGMP binding to GbpC induces an intramolecular signaling cascade by activating subsequently the GEF, Ras, and kinase domains. In this study, we report on the cellular localization of GbpC. In resting cells, the protein is present in the cytoplasm, but GbpC rapidly translocates to the cell boundary upon stimulation with the chemoattractant cAMP. Also, during the formation of cell-cell streams and osmotic shock, the protein localizes toward the plasma membrane and actin cytoskeleton. The translocation upon cAMP stimulation occurs downstream of heterotrimeric G proteins but is independent of guanylyl cyclases and the previously identified cGMP-induced intramolecular signaling cascade in GbpC. Mutations in the GRAM domain of GbpC lead to disturbed membrane association and inactivation of GbpC function during chemotaxis in vivo. Furthermore, we show that the GRAM domain itself associates with cellular membranes and binds various phospholipids in vitro. Together, the results show that GbpC receives multiple input signals that are both required for functional activity in vivo. cAMP-stimulation induces a cGMP-dependent signaling cascade, leading to activation of kinase activity, and, independently, cAMP induces a GRAM-dependent translocation of GbpC toward the plasma membrane and cell cortex, where it may locally phosphorylate effector proteins, which are needed for proper biological activity.  相似文献   

8.
Methylation of deoxycytidine incorporated by DNA excision-repair was studied in human diploid fibroblasts following damage with ultraviolet radiation, N-methyl-N-nitrosourea, or N-acetoxy-2-acetylami-nofluorene. In confluent, nondividing cells, methylation in repair patches induced by all three agents is slow and incomplete. Whereas after DNA replication in logarithmic-phase cultures a steady state level of 3.4% 5-methylcytosine is reached in less than 2 hr after cells are labeled with 6-3H-deoxycytidine, following ultraviolet-stimulated repair synthesis in confluent cells it takes about 3 days to reach a level of ~2.0% 5-methylcytosine in the repair patch. In cells from cultures in logarithmic-phase growth, 5-methylcytosine formation in ultraviolet-induced repair patches occurs faster and to a greater extent, reaching a level of ~2.7% in 10–20 hr. Preexisting hypomethylated repair patches in confluent cells are methylated further when the cells are stimulated to divide; however, the repair patch may still not be fully methylated before cell division occurs. Thus DNA damage and repair may lead to heritable loss of methylation at some sites.  相似文献   

9.
Platelet pseudopodia were compared to platelet cell bodies with respect to their lipid composition, fatty acid distribution and protein composition. The methodology for producing pseudopodial preparations of platelets stimulated with thrombin, ADP or calcium ionophore was established. The separation of pseudopodia and cell bodies was verified by electron microscopic examination of the respective platelet components. Lipid analyses demonstrated a preponderance of lysophospholipids and sphingomyelin in pseudopodial preparations and a large increase in mono-, di- and tri-ene fatty acids as compared to cell bodies. Changes were also evident in the protein composition evaluated by one- and two-dimensional SDS-polyacrylamide gel electrophoresis and by [32P]ATP labeling of exofacial membrane proteins. A protein of approximately 68 kDa which reacted strongly with antibody to PlA1, was prominantly displayed in platelet pseudopodia. Thus, our studies demonstrate a heterogeneous distribution of lipids and proteins in a mammalian membrane system which may have important implications for the functional behavior of the cell.  相似文献   

10.
We have compared Ca-dependent exocytosis in excised giant membrane patches and in whole-cell patch clamp with emphasis on the rat secretory cell line, RBL. Stable patches of 2-4 pF are easily excised from RBL cells after partially disrupting actin cytoskeleton with latrunculin A. Membrane fusion is triggered by switching the patch to a cytoplasmic solution containing 100-200 microM free Ca. Capacitance and amperometric recording show that large secretory granules (SGs) containing serotonin are mostly lost from patches. Small vesicles that are retained (non-SGs) do not release serotonin or other substances detected by amperometry, although their fusion is reduced by tetanus toxin light chain. Non-SG fusion is unaffected by N-ethylmaleimide, phosphatidylinositol-4,5-bis-phosphate (PI(4,5)P(2)) ligands, such as neomycin, a PI-transfer protein that can remove PI from membranes, the PI(3)-kinase inhibitor LY294002 and PI(4,5)P(2), PI(3)P, and PI(4)P antibodies. In patch recordings, but not whole-cell recordings, fusion can be strongly reduced by ATP removal and by the nonspecific PI-kinase inhibitors wortmannin and adenosine. In whole-cell recording, non-SG fusion is strongly reduced by osmotically induced cell swelling, and subsequent recovery after shrinkage is then inhibited by wortmannin. Thus, membrane stretch that occurs during patch formation may be a major cause of differences between excised patch and whole-cell fusion responses. Regarding Ca sensors for non-SG fusion, fusion remains robust in synaptotagmin (Syt) VII-/- mouse embryonic fibroblasts (MEFs), as well as in PLCdelta1, PLC delta1/delta4, and PLCgamma1-/- MEFs. Thus, Syt VII and several PLCs are not required. Furthermore, the Ca dependence of non-SG fusion reflects a lower Ca affinity (K(D) approximately 71 microM) than expected for these C2 domain-containing proteins. In summary, we find that non-SG membrane fusion behaves and is regulated substantially differently from SG fusion, and we have identified an ATP-dependent process that restores non-SG fusion capability after it is perturbed by membrane stretch or cell dilation.  相似文献   

11.
Elevation of intracellular cAMP levels in Necturus gallbladder epithelium (NGB) induces an apical membrane Cl- conductance (GaCl). Its characteristics (i.e., magnitude, anion selectivity, and block) were studied with intracellular microelectrode techniques. Under control conditions, the apical membrane conductance (Ga) was 0.17 mS.cm-2, primarily ascribable to GaK. With elevation of cell cAMP to maximum levels, Ga increased to 6.7 mS.cm-2 and became anion selective, with the permeability sequence SCN- > NO3- > I- > Br- > Cl- >> SO4(2-) approximately gluconate approximately cyclamate. GaCl was not affected by the putative Cl- channel blockers Cu2+, DIDS, DNDS, DPC, furosemide, IAA-94, MK-196, NPPB, SITS, verapamil, and glibenclamide. To characterize the cAMP-activated Cl- channels, patch-clamp studies were conducted on the apical membrane of enzyme-treated gallbladders or on dissociated cells from tissues exposed to both theophylline and forskolin. Two kinds of Cl- channels were found. With approximately 100 mM Cl- in both bath and pipette, the most frequent channel had a linear current-voltage relationship with a slope conductance of approximately 10 pS. The less frequent channel was outward rectifying with slope conductances of approximately 10 and 20 pS at -40 and 40 mV, respectively. The Cl- channels colocalized with apical maxi-K+ channels in 70% of the patches. The open probability (Po) of both kinds of Cl- channels was variable from patch to patch (0.3 on average) and insensitive to [Ca2+], membrane voltage, and pH. The channel density (approximately 0.3/patch) was one to two orders of magnitude less than that required to account for GaCl. However, addition of 250 U/ml protein kinase A plus 1 mM ATP to the cytosolic side of excised patches increased the density of the linear 10-pS Cl- channels more than 10- fold to four per patch and the mean Po to 0.5, close to expectations from GaCl. The permeability sequence and blocker insensitivity of the PKA-activated channels were identical to those of the apical membrane. These data strongly suggest that 10-pS Cl- channels are responsible for the cAMP-induced increase in apical membrane conductance of NGB epithelium.  相似文献   

12.
Directed cell migration occurs in response to extracellular cues. Following stimulation of a cell with chemoattractant, a significant rearrangement of the actin cytoskeleton is mediated by intracellular signaling pathways and results in polarization of the cell and movement via pseudopod extension. Amoeboid myosin Is play a critical role in regulating pseudopod formation in Dictyostelium, and their activity is activated by heavy chain phosphorylation. The effect of chemotactic stimulation on the in vivo phosphorylation level of a Dictyostelium myosin I, myoB, was tested. The myoB heavy chain is phosphorylated in vivo on serine 322 (the myosin TEDS rule phosphorylation site) in chemotactically competent cells. The level of myoB phosphorylation increases following stimulation of starving cells with the chemoattractant cAMP. A 3-fold peak increase in the level of phosphorylation is observed at 60 s following stimulation, a time at which the Dictyostelium cell actively extends pseudopodia. These findings suggest that chemotactic stimulation results in increased myoB activity via heavy chain phosphorylation and contributes to the global extension of pseudopodia that occurs prior to polarization and directed motility.  相似文献   

13.
During mitosis in budding yeast, cortically anchored dynein generates pulling forces on astral microtubules to position the mitotic spindle across the mother-bud neck. The attachment molecule Num1 is required for dynein anchoring at the cell membrane, but how Num1 assembles into stationary cortical patches and interacts with dynein is unknown. We show that an N-terminal Bin/Amphiphysin/Rvs (BAR)-like domain in Num1 mediates the assembly of morphologically distinct patches and its interaction with dynein for spindle translocation into the bud. We name this domain patch assembly domain (PA; residues 1-303), as it was both necessary and sufficient for the formation of functional dynein-anchoring patches when it was attached to a pleckstrin homology domain or a CAAX motif. Distinct point mutations targeting the predicted BAR-like PA domain differentially disrupted patch assembly, dynein anchoring, and mitochondrial attachment functions of Num1. We also show that the PA domain is an elongated dimer and discuss the mechanism by which it drives patch assembly.  相似文献   

14.
The lipid second messenger PI(4,5)P(2) modulates actin dynamics, and its local accumulation at plasmalemmal microdomains (rafts) might mediate regulation of protrusive motility. However, how PI(4,5)P(2)-rich rafts regulate surface motility is not well understood. Here, we show that upon signals promoting cell surface motility, PI(4,5)P(2) directs the assembly of dynamic raft-rich plasmalemmal patches, which promote and sustain protrusive motility. The accumulation of PI(4,5)P(2) at rafts, together with Cdc42, promotes patch assembly through N-WASP. The patches exhibit locally regulated PI(4,5)P(2) turnover and reduced diffusion-mediated exchange with their environment. Patches capture microtubules (MTs) through patch IQGAP1, to stabilize MTs at the leading edge. Captured MTs in turn deliver PKA to patches to promote patch clustering through further PI(4,5)P(2) accumulation in response to cAMP. Patch clustering restricts, spatially confines, and polarizes protrusive motility. Thus, PI(4,5)P(2)-dependent raft-rich patches enhance local signaling for motility, and their assembly into clusters is regulated through captured MTs and PKA, coupling local regulation of motility to cell polarity, and organization.  相似文献   

15.
In nonpolar excitable cells, guanine nucleotide regulatory (G) proteins have been shown to modulate ion channel activity in response to hormone receptor activation. In polarized epithelia, hormone receptor-G protein coupling involved in the generation of cAMP occurs on the basolateral membrane, while the physiological response to this messenger is a stimulation of ion channel activity at the apical membrane. In the present study we have utilized the patch-clamp technique to assess if the polarized renal epithelia, A6, have topologically distinct G proteins at their apical membrane capable of modulating Na+ channel activity. In excised inside-out patches of apical membranes, spontaneous Na+ channel activity (conductance 8-9 picosiemens) was inhibited by the addition of 0.1 mM guanosine 5'-O-(2-thio)diphosphate to the cytosolic membrane surface without an effect on single channel conductance. In contrast, the percent open time of spontaneous Na+ channels increased from 6 to 50% following the addition of 0.1 mM GTP. The addition of preactivated pertussis toxin (100 ng/ml) to the cytosolic bathing solution of the excised patch inhibited spontaneous Na+ channel activity within a minute by 85% from approximately 47 to 7% open time and reduced the percent open time for Na+ channel activity to zero after approximately 3 min. The addition of 0.1 mM guanosine 5'-(3-O-thio)triphosphate or the addition of 20 pM purified human alpha i-3 subunit to pertussis toxin-treated membrane patches restored Na+ channel activity from zero to 35% open time. As little as 0.2 pM alpha i-3 subunit was capable of restoring Na+ channel activity. These data provide evidence for a role of pertussis toxin-sensitive G proteins in the apical plasma membrane of renal epithelia distal to signal transduction pathways in the basolateral membrane of these cells. This raises the possibility of a topologically distinct signal transducing pathway co-localized with the Na+ channel.  相似文献   

16.
BACKGROUND: Starving amoebae of Dictyostelium discoideum communicate by relaying extracellular cAMP signals, which direct chemotactic movement, resulting in the aggregation of thousands of cells into multicellular aggregates. Both cAMP relay and chemotaxis require the activation of PI3 kinase signaling. The spatiotemporal dynamics of PI3 kinase signaling can be followed in individual cells via the cAMP-induced membrane recruitment of a GFP-tagged PH domain-containing protein, CRAC, which is required for the activation of adenylylcyclase.RESULTS: We show that polarized periodic CRAC-GFP translocation occurs during the aggregation and mound stages of development in response to periodic cAMP signals. The duration of CRAC translocation to the membrane is determined by the duration of the rising phase of the cAMP signal. The system shows rapid adaptation and responds to the rate of change of the extracellular cAMP concentration. When the cells are in close contact, it takes 10 s for the signal to propagate from one cell to the next. In slugs, all cells show a permanent polarized PI3 kinase signaling in their leading edge, which is dependent on cell-cell contact.CONCLUSIONS: Measuring the redistribution of GFP-tagged CRAC has enabled us to study the dynamics of PI3 kinase-mediated cell-cell communication at the individual cell level in the multicellular stages of Dictyostelium development. This approach should also be useful to study the interactions between cell-cell signaling, cell polarization, and movement in the development of other organisms.  相似文献   

17.
Isoproterenol is a beta adrenergic agonist whose effects have been attributed to the generation of cAMP. Previous studies have shown that it inhibits glucose transport in adipocytes without changing the number of insulin-responsive glucose transporters (GLUT4) on the cell surface. However, we have shown previously that cAMP stimulates translocation of GLUT4 to the cell surface in adipocytes (Keladaet al. J Biol Chem 267, 7021–7025, 1992). We therefore further investigated the mechanisms involved in isoproterenol regulation of glucose transport. Consistent with the effects of dibutyryl cAMP, we found that a low concentration of isoproterenol (10 nM) stimulated glucose transport and the translocation of GLUT4 from the low density microsomal fraction to the plasma membrane. By contrast, a higher concentration of isoproterenol (1 M) did not stimulate transport or GLUT4 translocation and furthermore inhibited dibutyryl cAMP-stimulated GLUT4 translocation. This inhibitory effect was specific for cAMP since isoproterenol had no effect on insulin-stimulated GLUT4 translocation. We conclude that isoproterenol has a biphasic effect on glucose transport, mediated by acute translocation of GLUT4 at low concentrations and by inhibition of intrinsic activity at high concentration, both of which may be explained by effects of cAMP. It has a further cAMP-independent effect at high concentration to inhibit cAMP-mediated translocation of GLUT4.This work forms portions of the PhD thesis requirements.  相似文献   

18.
Several recent studies have demonstrated that eukaryotic cells, including amoeboid cells of Dictyostelium discoideum and neutrophils, respond to chemoattractants by translocation of PH-domain proteins to the cell membrane, where these proteins participate in the modulation of the cytoskeleton and relay of the signal. When the chemoattractant is released from a pipette, the localization is found predominantly on the proximal side of the cell. The recruitment of PH-domain proteins, particularly for Dictyostelium cells, occurs very rapidly (<2 s). Thus, the mechanism responsible for the first step in the directional sensing process of a cell must be able to establish an asymmetry on the same time scale. Here, we propose a simple mechanism in which a second messenger, generated by local activation of the membrane, diffuses through the interior of the cell, suppresses the activation of the back of the cell, and converts the temporal gradient into an initial cellular asymmetry. Numerical simulations show that such a mechanism is plausible. Available evidence suggests that the internal inhibitor may be cGMP, which accumulates within less than a second following treatment of cells with external cAMP.  相似文献   

19.
Communication between organelles is essential to coordinate cellular functions and the cell's response to physiological and pathological stimuli. Organellar communication occurs at membrane contact sites (MCSs), where the endoplasmic reticulum (ER) membrane is tethered to cellular organelle membranes by specific tether proteins and where lipid transfer proteins and cell signaling proteins are located. MCSs have many cellular functions and are the sites of lipid and ion transfer between organelles and generation of second messengers. This review discusses several aspects of MCSs in the context of lipid transfer, formation of lipid domains, generation of Ca2+ and cAMP second messengers, and regulation of ion transporters by lipids.  相似文献   

20.
cAMP-gated channels were studied in inside-out membrane patches excised from the apical cellular pole of isolated olfactory receptor cells of the rat. In the absence of divalent cations the dose-response curve of activation of patch current by cAMP had a KM of 4.0 microM at -50 mV and of 2.5 microM at +50 mV. However, addition of 0.2 or 0.5 mM Ca2+ shifted the KM of cAMP reversibly to the higher cAMP concentrations of 33 or 90 microM, respectively, at -50 mV. Among divalent cations, the relative potency for inducing cAMP affinity shifts was: Ca2+ > Sr2+ > Mn2+ > Ba2+ > Mg2+, of which Mg2+ (up to 3 mM) did not shift the KM at all. This potency sequence corresponds closely to that required for the activation of calmodulin. However, the Ca(2+)-sensitivity is lower than expected for a calmodulin-mediated action. Brief (60 s) transient exposure to 3 mM Mg2+, in the absence of other divalent cations, had a protective effect in that following washout of Mg2+, subsequent exposure to 0.2 mM Ca2+ no longer caused affinity shifts. This protection effect did not occur in intact cells and was probably a consequence of patch excision, possibly representing ablation of a regulatory protein from the channel cyclic nucleotide binding site. Thus, the binding of divalent cations, probably via a regulatory protein, controls the sensitivity of the cAMP-gated channels to cAMP. The influx of Ca2+ through these channels during the odorant response may rise to a sufficiently high concentration at the intracellular membrane surface to contribute to the desensitization of the odorant- induced response. The results also indicate that divalent cation effects on cyclic nucleotide-gated channels may depend on the sequence of pre-exposure to other divalent cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号