首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Chi Z  Wang XX  Ma ZC  Buzdar MA  Chi ZM 《Biometals》2012,25(1):219-230
The l-ornithine-N 5-monooxygenase structural gene (SidA gene, accession number: FJ769160) was isolated from both the genomic DNA and cDNA of the marine yeast Aureobasidium pullulans HN6.2 by inverse PCR and RT-PCR. An open reading frame of 1,461 bp encoding a 486 amino acid protein (isoelectric point: 7.79) with calculated molecular weight of 55.4 kDa was characterized. The promoter of the gene (intronless) was located from −1 to −824 and had three HGATAR boxes which were putative binding motifs for the respective DNA-binding motifs and one CATA box. The SidA gene in A. pullulans HN6.2 was disrupted by integrating the hygromycin B phosphotransferase (HPT) gene into Open Reading Frame of the SidA gene using homologous recombination. Of all the disruptants obtained, one strain S6 (∆sidA) did not synthesize both intracellular and extracellular fusigen so that it could not inhibit growth of the pathogenic bacteria Vibrio anguillarum and Vibrio parahaemolyticus. The disruptant S6 did not grow in the iron-deplete medium and seawater medium because cell budding was stopped, but could grow in the iron-replete medium with 10 μM Fe3+ and Fe2+. H2O2 in the medium was more toxic to the disruptant S6 than to its wild type HN6.2. Thus, we infer that the fusigen produced by the marine-derived A. pullulans HN6.2 can play a unique role in chelating, uptake and concentration of iron to maintain certain proper physiological functions within the cells and secretion of siderophore may represent an efficient tool to eliminate competitors to compete for limiting nutritional resources in marine environments.  相似文献   

3.
After analysis using HPLC and electronic ion spray mass spectroscopy, the purified siderophore produced by the marine-derived Aureobasidium pullulans HN6.2 was found to be fusigen. The purified desferric fusigen still had strong inhibition of growth of the pathogenic Vibrio anguillarum while the fusigen chelated by Fe3+ lost the ability to inhibit the growth of the pathogenic bacterium. The added iron in the medium repressed expression of the hydroxylase gene encoding ornithine N5-oxygenase that catalyzes the N5-hydroxylation of ornithine for the first step of siderophore biosynthesis in the yeast cells while expression of the hydroxylase gene in the yeast cells grown in the medium plus ornithine was enhanced.  相似文献   

4.
A highly enantioselective cis-epoxysuccinic acid hydrolase from Nocardia tartaricans was purified to electrophoretic homogeneity. The enzyme was purified 184-fold with a yield of 18.8 %. The purified cis-epoxysuccinic acid hydrolase had a monomeric molecular weight of 28 kDa, and its optimum conditions were 37 °C and pH 7–9. With sodium cis-epoxysuccinate as the substrate, Michaelis–Menten enzyme kinetics analysis gave a Km value of 35.71 mM and a Vmax of 2.65 mM min?1. The enzyme was activated by Ni2+ and Al3+, while strongly inhibited by Fe3+, Fe2+, Cu2+, and Ag+. The cis-epoxysuccinic acid hydrolase gene was cloned, and its open reading frame sequence predicted a protein composed of 253 amino acids. A pET11a expression plasmid carrying the gene under the control of the T7 promoter was introduced into Escherichia coli, and the cis-epoxysuccinic acid hydrolase gene was successfully expressed in the recombinant strains.  相似文献   

5.
In the tank bioleaching process, maximising solid loading and mineral availability, the latter through decreasing particle size, are key to maximising metal extraction. In this study, the effect of particle size distribution on bioleaching performance and microbial growth was studied through applying knowledge based on medical geology research to understand the adverse effects of suspended fine pyrite particles. Small-scale leaching studies, using pyrite concentrate fractions (106–75, 75–25, ?25 μm fines), were used to confirm decreasing performance with decreasing particle size (D 50 <40 μm). Under equivalent experimental conditions, the generation of the reactive oxygen species (ROS), hydrogen peroxide and hydroxyl radicals from pyrite was illustrated. ROS generation measured from the different pyrite fractions was found to increase with increasing pyrite surface area loading (1.79–74.01 m2 L?1) and Fe2+ concentration (0.1–2.8 g?L?1) in solution. The highest concentration of ROS was measured from the finest fraction of pyrite (0.85 mM) and from the largest concentration of Fe2+ (0.78 mM). No ROS was detected from solutions containing only Fe3+ under the same conditions tested. The potential of ROS to inhibit microbial performance under bioleaching conditions was demonstrated. Pyrite-free Sulfolobus metallicus cultures challenged with hydrogen peroxide (0.5–2.5 mM) showed significant decrease in both cell growth and Fe2+ oxidation rates within the concentration range 1.5–2.5 mM. In combination, the results from this study suggest that conditions of large pyrite surface area loading, coupled with high concentrations of dissolved Fe2+, can lead to the generation of ROS, resulting in oxidative stress of the microorganisms.  相似文献   

6.
Two native epoxide hydrolases (EHs) were previously discovered from mung bean powder (Vigna radiata), both of which can catalyze the enantioconvergent hydrolysis of p-nitrostyrene oxide (pNSO). In this study, the encoding gene of VrEH1 was successfully cloned from the cDNA of V. radiata by RT-PCR and rapid amplification of cDNA ends (RACE) technologies. High homologies were found to two putative EHs originated from Glycine max (80 %) and Medicago truncatula (79 %). The vreh1 gene constructed in pET28a(+) vector was then heterologously overexpressed in Escherichia coli BL21(DE3), and the encoded protein was purified to homogeneity by nickel affinity chromatography. It was shown that VrEH1 has an optimum activity at 45 °C and is very thermostable with an inactivation energy of 468 kJ mol-1. The enzyme has no apparent requirement of metal ions for activity, and its activity was strongly inhibited by 1 mM of Ni2+, Cu2+, Fe2+, or Co2+. By adding 0.1 % Triton X-100, the enzyme activity could be significantly increased up to 340 %. VrEH1 shows an unusual ability of enantioconvergent catalysis for the hydrolysis of racemic pNSO, affording (R)-p-nitrophenyl glycol (pNPG). It displays opposite regioselectivity toward (S)-pNSO (83 % to Cα) in contrast to (R)-pNSO (87 % to Cβ). The K M and k cat of VrEH1 were determined to be 1.4 mM and 0.42 s-1 for (R)-pNSO and 5.5 mM and 6.2 s-1 for (S)-pNSO. This thermostable recombinant VrEH1 with enantioconvergency is considered to be a promising biocatalyst for the highly productive preparation of enantiopure vicinal diols and also a good model for understanding the mechanism of EH stereoselectivity.  相似文献   

7.
A new acidophilic xylanase (XYN11A) from Penicillium oxalicum GZ-2 has been purified, identified and characterized. Synchronized fluorescence spectroscopy was used for the first time to evaluate the influence of metal ions on xylanase activity. The purified enzyme was identified by MALDI TOF/TOF mass spectrometry, and its gene (xyn11A) was identified as an open reading frame of 706 bp with a 68 bp intron. This gene encodes a mature protein of 196 residues with a predicted molecular weight of 21.3 kDa that has the 100 % identity with the putative xylanase from the P. oxalicum 114-2. The enzyme shows a structure comprising a catalytic module family 10 (GH10) and no carbohydrate-binding module family. The specific activities were 150.2, 60.2, and 72.6 U/mg for beechwood xylan, birchwood xylan, and oat spelt xylan, respectively. XYN11A exhibited optimal activity at pH 4.0 and remarkable pH stability under extremely acidic condition (pH 3). The specific activity, K m and V max values were 150.2 U/mg, 30.7 mg/mL, and 403.9 μmol/min/mg for beechwood xylan, respectively. XYN11A is a endo-β-1,4-xylanase since it release xylobiose and xylotriose as the main products by hydrolyzing xylans. The activity of XYN11A was enhanced 155 % by 1 mM Fe2+ ions, but was inhibited strongly by Fe3+. The reason of enhancing the xylanase activity of XYN11A with 1 mM Fe2+ treatment may be responsible for the change of microenvironment of tryptophan residues studied by synchronous fluorescence spectrophotometry. Inhibition of the xylanase activity by Fe3+ was first time demonstrated to associate tryptophan fluorescence quenching.  相似文献   

8.
Pleurotus ferulae is a mushroom typically found in arid steppe that is distributed widely in the Junggar Basin of Xinjiang, China. In this work, laccase production by P. ferulae JM30X was optimized in terms of medium composition and culture conditions. After optimization, the highest laccase activity obtained was 6,832.86 U/L. A single isozyme with a molecular weight of 66 kDa was observed by SDS-PAGE and native-PAGE. Optimum pH and temperature were 3.0 and 50–70 °C, respectively. The best laccase substrate was ABTS, for which the Michaelis-Menten constant (K m) and catalytic efficiency (K cat/K m) value for P. ferulae laccase were 0.193 mM and 2.73?×?106 (mM s)?1, respectively. The activity of purified laccase was increased by more than four-fold by Cu2+, Mn2+ and Mg2+, while it was completely inhibited by Fe2+ and Fe3+. The production of laccase was influenced by the initial pH and K+ concentration, and the activity of purified laccase was enhanced by Cu2+, Mn2+ and Mg2+. This Pleurotus genus laccase from P. ferulae JM30X was analyzed by MS spectrum and the results are conducive to furthering our understanding of Pleurotus genus laccases.  相似文献   

9.
A species of Dechloromonas, strain UWNR4, was isolated from a nitrate-reducing, enrichment culture obtained from Wisconsin River (USA) sediments. This strain was characterized for anaerobic oxidation of both aqueous and chelated Fe(II) coupled to nitrate reduction at circumneutral pH. Dechloromonas sp. UWNR4 was incubated in anoxic batch reactors in a defined medium containing 4.5–5 mM NO3 ?, 6 mM Fe2+ and 1–1.8 mM acetate. Strain UWNR4 efficiently oxidized Fe2+ with 90 % oxidation of Fe2+ after 3 days of incubation. However, oxidation of Fe2+ resulted in Fe(III)-hydroxide-encrusted cells and loss of metabolic activity, suggested by inability of the cells to utilize further additions of acetate. In similar experiments with chelated iron (Fe(II)-EDTA), encrusted cells were not produced and further additions of acetate and Fe(II)-EDTA could be oxidized. Although members of the genus Dechloromonas are primarily known as perchlorate and nitrate reducers, our findings suggest that some species could be members of microbial communities influencing iron redox cycling in anoxic, freshwater sediments. Our work using Fe(II)-EDTA also demonstrates that Fe(II) oxidation was microbially catalyzed rather than a result of abiotic oxidation by biogenic NO2 ?.  相似文献   

10.
A modified laccase gene, CcLCC6, from Coprinopsis cinerea was chemically synthesized according to the yeast codon bias and expressed in Pichia pastoris. The main properties of laccase, effects of ions and inhibitors, and optimal condition for decolouring malachite green (MG) were investigated in this study. The optimal pH level and temperature of laccase are 3.0 and 40 °C, respectively. The metal ions Mn2+, Zn2+, Fe3+ and Al3+ could inhibit laccase activity, as well as 1 mM of sodium dodecyl sulphate and sodium thiosulphate. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), as a mediator, was necessary in decolorizing MG. The optimal pH and temperature for MG decolorization were 3.0 and 50 °C, respectively. Approximately 0.02 μM recombinant laccase could effectively decolour 0.05 mM of MG in 1 h. CcLCC6I could inhibit the toxicity of MG to P. pastoris. This is the first report on the successful expression in P. pastoris of CcLCC6I and its enzymatic property. Laccase can also be considered as a candidate for treating industrial effluent containing MG.  相似文献   

11.
A white-rot basidiomycete, isolated from decayed acacia wood (from Northwest of Tunisia) and identified as Trametes sp, was selected in a broad plate screening because of its ability to decolorize and dephenolize olive oil mill wastewater (OMW) efficiently. The major laccase was purified and characterized as a monomeric protein with apparent molecular mass of 61 kDa (SDS-PAGE). It exhibits high enzyme activity over broad pH and temperature ranges with optimum activity at pH 4.0 and a temperature of 60 °C. The purified laccase is stable at alkaline pH values. The enzyme retained 50 % of its activity after 90 min of incubation at 55 °C. Using ABTS, this laccase presented K m and V max values of 0.05 mM and 212.73 μmoL min?1 mg?1, respectively. It has shown a degrading activity towards a variety of phenolic compounds. The purified laccase was partially inhibited by Fe2+, Zn2+, Cd2+ and Mn2+, while Cu2+ acted as inducer. EDTA (10 mM) and NaN3 (10 mM) were found to completely inhibit its activity. 73 % OMW was dephenolized after 315 min incubation at 30 °C with 2 U mL?1 of laccase and 2 mM HBT.  相似文献   

12.
A codon-optimized 2-deoxyribose-5-phosphate aldolase (DERA) gene was newly synthesized and expressed in Escherichia coli to investigate its biochemical properties and applications in synthesis of statin intermediates. The expressed DERA was purified and characterized using 2-deoxyribose-5-phosphate as the substrate. The specific activity of recombinant DERA was 1.8 U/mg. The optimum pH and temperature for DERA activity were pH 7.0 and 35 °C, respectively. The recombinant DERA was stable at pH 4.0–7.0 and at temperatures below 50 °C. The enzyme activity was inhibited by 1 mM of Ni2+, Ba2+ and Fe2+. The apparent K m and V max values of purified enzyme for 2-deoxyribose-5-phosphate were 0.038 mM and 2.9 μmol min?1 mg?1, for 2-deoxyribose were 0.033 mM and 2.59 μmol min?1 mg?1, respectively, which revealed that the enzyme had similar catalytic efficiency towards phosphorylated and non-phosphorylated substrates. To synthesize statin intermediates, the bioconversion process for production of (3R, 5S)-6-chloro-2,4,6-trideoxyhexose from chloroacetaldehyde and acetaldehyde by the recombinant DERA was developed and a conversion of 94.4 % was achieved. This recombinant DERA could be a potential candidate for application in production of (3R, 5S)-6-chloro-2,4,6-trideoxyhexose.  相似文献   

13.
The integration of oleaginous microalgae cultivation with high-value products is considered a low-cost approach for manufacturing algae-based biodiesel. The objective of this study was to investigate the potential of using Fe(II) to produce fatty acids and astaxanthin in mixotrophic Chromochloris zofingiensis. Fatty acid biosynthesis was less sensitive than astaxanthin formation to the changes in Fe2+ concentrations. However, the enhancement and inhibition of fatty acids formation were concomitant with an increase and a decrease in the production of astaxanthin, respectively. The highest contents of astaxanthin and total fatty acids were simultaneously obtained at 0.2 mM Fe2+ with the corresponding values of 2.2 mg g?1 (i.e., 25.8 mg l?1) and 41.8 % dry weight (i.e., 5 g l?1).  相似文献   

14.
The gene encoding the β-galactosidase from the dairy Lactococcus lactis IL1403 strain was cloned, sequenced and overexpressed in Escherichia coli. The purified enzyme has a tetrameric arrangement composed of four identical 120 kDa subunits. Biochemical characterization showed that it is optimally active within a wide range of temperatures from 15 to 55 °C and of pH from 6.0 to 7.5. For its maximal activity this enzyme requires only 0.8 mM Fe2+ and 1.6 mM Mg2+. Purified protein displayed a high catalytic efficiency of 102 s?1 mM?1 for lactose. The enzyme stability was increased by immobilization mainly at low pH (from 4.0 to 5.5) and high temperatures (55 and 60 °C). The bioconversion of lactose using the L. lactis β-galactosidase allows the production of lactose with a high bioconversion rate (98 %) within a wide range of pH and temperature.  相似文献   

15.
The effect of heavy metals on community structure of a heavy metal tolerant sulfidogenic consortium was evaluated by using a combination of denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene and dissimilatory sulfite reductase (dsrB) gene fragments, 16S rRNA gene cloning analysis and fluorescence in situ hybridization (FISH). For this purpose, four anaerobic semi-continuous stirred tank reactors (referred as R1–R4) were run in parallel for 12 weeks at heavy metal loading rates of 1.5, 3, 4.5 and 7.5 mg l?1 d?1 each of Cu2+, Ni2+, Zn2+, and Cr6+, respectively. The abundance ratio of Desulfovibrio vulgaris detected by FISH to total cell counts was consistent with the obtained results of cloning and DGGE. This indicated that D. vulgaris was dominant in all analyzed samples and played a key role in heavy metal removal in R1, R2, and R3. In contrast, after 4 weeks of operation of R4, a distinct biomass loss was observed and no positive hybridized cells were detected by specific probes for the domain Bacteria, sulfate-reducing bacteria and D. vulgris. High removal efficiencies of heavy metals were achieved in R1, R2 and R3 after 12 weeks, whereas the precipitation of heavy metals in R4 was significantly decreased after 4 weeks and almost not observed after 6 weeks of operation. In addition, the anaerobic bacteria, such as Pertrimonas sulfuriphila, Clostridium sp., Citrobacter amalonaticus, and Klebsiella sp., identified from DGGE bands and clone library were hypothesized as heavy metal resistant bacteria at a loading rate of 1.5 mg l?1 d?1 of Cu2+, Ni2+, Zn2+, and Cr6+.  相似文献   

16.
The aim of this paper was to describe the effect of various metal ions on the activity of protocatechuate 3,4-dioxygenase from Stenotrophomonas maltophilia KB2. We also compared activity of different dioxygenases isolated from this strain, in the presence of metal ions, after induction by various aromatic compounds. S. maltophilia KB2 degraded 13 mM 3,4-dihydroxybenzoate, 10 mM benzoic acid and 12 mM phenol within 24 h of incubation. In the presence of dihydroxybenzoate and benzoate, the activity of protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase was observed. Although Fe3+, Cu2+, Zn2+, Co2+, Al3+, Cd2+, Ni2+ and Mn2+ ions caused 20–80 % inhibition of protocatechuate 3,4-dioxygenase activity, the above-mentioned metal ions (with the exception of Ni2+) inhibited catechol 1,2-dioxygenase to a lesser extent or even activate the enzyme. Retaining activity of at least one of three dioxygenases from strain KB2 in the presence of metal ions makes it an ideal bacterium for bioremediation of contaminated areas.  相似文献   

17.
Anisodus luridus hairy root cultures were established to test biological effects of acetylsalicylic acid (ASA) and ultraviolet ray-B (UV-B) on gene expression, tropane alkaloid (TA) biosynthesis and efflux. The TAs-pathway gene expression was ASA dosage dependant. The expression of PMT, TRI and CYP80F1 showed no significant difference in hairy root cultures in treatment of 0.01 and 0.1 mM ASA, compared with those without ASA treatment; while 0.01 or 0.1 mM ASA slightly upregulated H6H expression. All the four genes including PMT, TRI, CYP80F1 and H6H had a dramatic increase in 1 mM ASA-treated hairy root cultures compared with control. The expressing levels of all the four genes were much significantly higher in 1 mM ASA-treated hairy root cultures than those in 0.01 and 0.1 mM ASA-treated ones. As expected, hairy root cultures treated with 1 mM ASA had the highest capacity of TAs biosynthesis, in which the content of scopolamine and hyoscyamine reached respectively 57.2 and 14.7 μg g?1 DW. Surprisingly, it was found that 1 mM ASA dramatically induced the efflux of scopolamine. In the liquid medium with 1 mM ASA, the content of scopolamine was 153.4 μg flask?1, about 6.2 folds compared with that of control. At the same time, hyoscyamine was detected at trace levels in liquid medium. In the UV-B stressed hairy root cultures, all the four genes had a very strong increase of gene expression that led to more accumulation of scopolamine and lower accumulation of hyoscyamine. Only trace amounts of hyoscyamine and scopolamine were detected in the liquid medium when hairy root cultures were stressed under UV-B, and this suggested that UV-B did not affect TAs efflux.  相似文献   

18.
An esterase gene, est10, was identified from the genomic library of a deep-sea psychrotrophic bacterium Psychrobacter pacificensis. The esterase exhibited the optimal activity around 25 °C and pH 7.5, and maintained as high as 55.0 % of its maximum activity at 0 °C, indicating its cold adaptation. Est10 was fairly stable under room temperatures, retaining more than 80 % of its original activity after incubation at 40 °C for 2 h. The highest activity was observed against the short-chain substrate p-nitrophenyl butyrate (C4) among the tested p-nitrophenyl esters (C2–C16). It was slightly activated at a low concentration (1 mM) of Zn2+, Mg2+, Ba2+, Ca2+, Cu2+, Fe3+, urea and EDTA, but was inhibited by DTT and totally inactivated by PMSF. Interestingly, increased salinity considerably stimulated Est10 activity (up to 143.2 % of original activity at 2 M NaCl) and stability (up to 126.4 % after incubation with 5 M NaCl for 6.5 h), proving its salt tolerance. 0.05 and 0.1 % Tween 20, Tween 80, Triton X-100 and CHAPS increased the activity and stability of Est10 while SDS, CTAB had the opposite effect. Est10 was quite active after incubation with several 30 % organic solvents (methanol, DMSO, ethanediol) but exhibited little activity with 30 % isopropanol, ethanol, n-butanol and acetonitrile.  相似文献   

19.
Trehalose is a unique disaccharide capable of protecting proteins against environmental stress. A novel trehalose synthase (TreS) gene from Rhodococcus opacus was cloned and expressed in Escherichia coli Top10 and BL21 (DE3) pLysS, respectively. The recombinant TreS showed a molecular mass of 79 kDa. Thin layer chromatography (TLC) result suggested that this enzyme had the ability to catalyze the mutual conversion of maltose and trehalose. Moreover, high-performance liquid chromatography (HPLC) result suggested that glucose appeared as a byproduct with a conversion rate of 12 %. The purified recombinant enzyme had an optimum temperature of 25 °C and pH optimum around 7.0. Kinetic analysis revealed that the K m for trehalose was around 98 mM, which was a little higher than that of maltose. The preferred substrate of TreS was maltose according to the analysis of k cat/K m. Both 1 and 10 mM of Hg2+, Cu2+ and Al3+ could inhibit the TreS activity, while only 1 mM of Ca2+ and Mn2+ could increase its activity. Five amino acid residues, Asp244, Glu286, Asp354, His147 and His353, were shown to be conserved in R. opacus TreS, which were also important for α-amylase family enzyme catalysis.  相似文献   

20.
A nitrile hydratase (NHase) gene from Aurantimonas manganoxydans, cloned and expressed in Escherichia coli, gave an enzyme that efficiently hydrated 3-cyanopyridine to nicotinamide with high thermal stability. We have now found that adding Co2+ at 0.1 mM to LB medium was essential for production of an active enzyme. However, ≥0.3 mM Co2+ inhibited the growth of host cells in LB medium and decreased the production of the recombinant NHase. Furthermore, β-mercaptoethanol promoted regeneration of the Co2+-defective apoenzyme in vitro possibly by breaking a key disulfide bond thereby promoting the incorporation of Co2+ into the apoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号