首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Middle Rio Grande (MRG) of New Mexico has been influenced by man for over 500?years. Native Americans began diverting water to irrigate agricultural crops in the floodplain in the 14th century. The Spanish followed and increased agricultural irrigation to over 125 000 acres. Frequent flooding of the MRG valley in the 19th century led to many engineering projects in the early 20th century to control flooding. A series of impoundment dams, diversion dams, and levees were constructed. The loss of floodplain habitats throughout the MRG Valley has altered the riparian community and caused the demise of many fish species. A controlled flood pulse from Cochiti Reservoir, New Mexico was initiated in April 2005 to support the recovery of the endangered Rio Grande silvery minnow, Hybognathus amarus. This study documents habitat selection by larval fishes in a restored floodplain in the Rio Grande, NM. Larval fish light traps captured 394 larvae representing four cyprinid species (Pimephales promelas, H. amarus, Cyprinella lutrensis and Cyprinus carpio). Results for CCA indicate that Hybognathus amarus prefer shallow, low velocity habitats. Results from Chao-Jaccard similarity index indicated that relative contribution was highest in P. promelas at 64% followed by H. amarus 33%. Results from (dis)similarity analysis reveal that species composition between habitat orientation and date was highest in H. amarus at 42% followed by P. promelas 40%. Cyprinella lutrensis and C. carpio represented 9.5 and 8.5%, respectively. A general linear model indicated that only depth and velocity were significantly different (p?=?0.02 and p?=?0.03 respectively).  相似文献   

2.
1. Studies of mesic temperate and tropical rivers suggest an important role for floodplain habitats as nursery areas for larval and juvenile fishes. In arid‐land rivers the extent and duration of flooding is diminished and habitats and resources used by larval fishes are poorly known. Our study documented habitat and resource use of larval fishes in the Rio Grande, New Mexico, an arid‐land river. 2. Spatial and temporal distribution of larval and juvenile fishes and their inferred microhabitat preferences were studied during spring, summer and autumn, 2003. Stable carbon (13C : 12C) and nitrogen (15N : 14N) isotope ratios were measured to identify nutrient sources and characterise trophic positions of young‐of‐year fishes in this system. 3. Some fishes recruited during high flows (in spring), whereas others recruited during low‐flow periods in late summer. Regardless of the timing of reproduction, microhabitats with lower current velocity and higher temperature appeared to serve as vital nursery grounds for Rio Grande fishes. Ephemeral backwaters and disconnected side channels held the highest abundance and diversity of larvae and juveniles. 4. Stable isotope analyses revealed that fish larvae obtained carbon predominately from algal production in early summer, but used organic carbon derived from emergent macrophytes as river discharge decreased in mid‐summer. This shift may have been facilitated by microinvertebrate prey that grazed down edible algae and then switched to macrophytes in mid‐summer. Nitrogen isotope ratios did not differ among species or early life stages, suggesting that larval and juvenile fishes use similar food resources, especially when restricted to isolated pools in summer.  相似文献   

3.
Comparative study of the taste attractiveness of different aquatic invertebrates (daphnids Daphnia longispina and D. pulex, larvae of Chironomidae, whirligig Gyrinus marinus, water skaters Gerris spp.) and plants (duckweed Lemna minor, filamentous alga Cladophora sp.) for roach Rutilus rutilus, bitterling Rhodeus sericeus amarus, and rainbow trout Oncorhynchus mykiss has been performed. Roach’s taste preferences for agar-agar pellets, containing the aqueous extracts of the organisms under study, varies from maximum (daphnids, filamentous alga, larvae of chironomids) to minimum (duckweed) or it can be absent (whirligig). Different taste preferences to pellets containing the extracts of aquatic organisms has been also found in bitterling (daphnids, larvae of chironomids, water skaters) but not in rainbow trout (daphnids, water skaters). It has been suggested that whirligigs and water skaters do not contain any deterrent substances ensuring chemical defense from predators. It has been demonstrated that intraoral gustatory reception of food items follows two alternative behavioral stereotypes that are different from each other in the time during which food items are retained in the oral cavity and the number of manipulations (subsequent grasps of a food item) during the perception process. We discuss the importance of gustatory reception as the major sensory mechanism that ensures feeding selectivity of fish and decreases interspecific competition over food.  相似文献   

4.
Historical‐to‐recent climate change and anthropogenic disturbance affect species distributions and genetic structure. The Rio Grande watershed of the United States and Mexico encompasses ecosystems that are intensively exploited, resulting in substantial degradation of aquatic habitats. While significant anthropogenic disturbances in the Rio Grande are recent, inhospitable conditions for freshwater organisms likely existed prior to such disturbances. A combination of anthropogenic and past climate factors may contribute to current distributions of aquatic fauna in the Rio Grande basin. We used mitochondrial DNA and 18 microsatellite loci to infer evolutionary history and genetic structure of an endangered freshwater mussel, Popenaias popeii, throughout the Rio Grande drainage. We estimated spatial connectivity and gene flow across extant populations of P. popeii and used ecological niche models (ENMs) and approximate Bayesian computation (ABC) to infer its evolutionary history during the Pleistocene. structure results recovered regional and local population clusters in the Rio Grande. ENMs predicted drastic reductions in suitable habitat during the last glacial maximum. ABC analyses suggested that regional population structure likely arose in this species during the mid‐to‐late Pleistocene and was followed by a late Pleistocene population bottleneck in New Mexico populations. The local population structure arose relatively recently, perhaps due to anthropogenic factors. Popenaias popeii, one of the few freshwater mussel species native to the Rio Grande basin, is a case study for understanding how both geological and anthropogenic factors shape current population genetic structure. Conservation strategies for this species should account for the fragmented nature of contemporary populations.  相似文献   

5.
The response of tomato (Solanum lycopersicum L.) to abiotic stress has been widely investigated. Recent physiological studies focus on the use of osmoprotectants to ameliorate stress damage, but experiments at a field level are scarce. Two tomato cultivars were used for an experiment with saline water (6.57 dS m?1) and subsurface drip irrigation (SDI) in a silty clay soil. Rio Grande is a salinity-tolerant cultivar, while Heinz-2274 is the salt-sensitive cultivar. Exogenous application of proline was done by foliar spray at two concentrations (10 and 20 mg L?1) during the flowering stage. Control plants were treated with saline water without proline. Proline at the lower concentration (10 mg L?1) increased dry mass of different plant organs (leaves, stems, and roots) and it improved various chlorophyll a fluorescence parameters compared with controls. Regarding mineral nutrition, K+ and P were higher in different organs, while low accumulation of Na+ occurred. However, Mg2+ was very high in all tissues of Rio Grande at the higher concentration of proline applied. Thus, the foliar spray of proline at 10 mg L?1 increased the tolerance of both cultivars. The growth of aboveground biomass of Heinz-2274 was enhanced by 63.5%, while Rio Grande improved only by 38.9%.  相似文献   

6.
  1. Many once-perennial rivers have become intermittent. Channel drying can result in fish mortality if refuges are not available. Understanding where refuges occur and if fishes use these refuges can provide insight for species persistence and help stakeholders manage limited resources. Streamflow diversions in the Rio Grande of New Mexico can result in >60 km losses of aquatic habitat, affecting up to 30% of the range of imperiled Rio Grande silvery minnow (Hybognathus amarus). Potential refuges include areas with perennial flow below diversion dams, isolated pools, and irrigation return flows.
  2. We examined spatial and temporal patterns of both adult and young-of-year Rio Grande silvery minnow collected in isolated pools that formed during streamflow intermittency from 2009 to 2019. We hypothesised that: (1) Rio Grande silvery minnow would be more numerous in pools that persisted longer; (2) they would be more numerous in isolated pools located closer to upstream areas of perennial flow, due to upstream movement to escape drying; and (3) increased rate of aquatic habitat loss each day would result in more Rio Grande silvery minnow in isolated pools.
  3. During the 12 years of the study, we counted Rio Grande silvery minnow in 3,985 isolated pools that formed during streamflow intermittency. We related counts of Rio Grande silvery minnow in each pool to the maximum pool depth, rate of loss of aquatic habitat that occurred that day, and distance each pool was to an upstream barrier. In 2016, we examined persistence of 290 isolated pools until complete desiccation or reconnection with continuous flows occurred, and the factors that influenced pool persistence.
  4. Deeper pools persisted for longer, but depth had a small positive effect on counts of adult Rio Grande silvery minnow and no effect on counts of young-of-year in isolated pools. Adults were more numerous in upstream isolated pools, whereas young-of-year were more numerous in downstream isolated pools. Rate of channel drying had little effect on the numbers of adult Rio Grande silvery minnow in isolated pools, but more young-of-year were stranded when the rate of drying was faster. On average, pools persisted <4 days and 263 of 290 dried completely before continuous flows returned. Only 66 of 4,749 Rio Grande silvery minnow occurred in pools that did not dry completely.
  5. Rio Grande silvery minnow did not appear to escape channel intermittency; instead, they became stranded in shrinking isolated pools that did not persist long enough to act as refuges for fishes. Lack of refuge during channel intermittency would result in catastrophic mortality of fishes through complete desiccation of pools if there were no management actions, such as translocating fish. To increase persistence through streamflow intermittency, conservation actions should match the species response to intermittency by ensuring the availability of perennial-water refuges at the appropriate spatial and temporal scale.
  相似文献   

7.
Substance flow across the water–air boundary on the floodplain Lake Holodnoe (Saratov oblast) is generally formed by the Culicomorpha (76.1%) and accounts for 0.35 g/m2 of the lake area per year. The energy flow amounts to 1.87 kcal/m2, and most of it accounts for the second half of summer and autumn. Annual removal of biogenic elements is 0.18 g/m2 for carbon, 0.04 g/m2 for nitrogen, and 0.004 g/m2 for phosphorus. The greatest contribution to flows of substance and energy is brought by large species of chironomids, as well as chaoborids and medium-sized chironomids, which produce several generations within a year and reach high abundance at a larval stage. Other floodplain lakes of the Volga River with similar biotopical features and species composition of amphibiotic insects are characterized by a quantitatively similar level of exchange processes with adjacent land ecosystems across the water–air boundary.  相似文献   

8.
The detection and identification of pathogens from water samples remain challenging due to variations in recovery rates and the cost of procedures. Ultrafiltration offers the possibility to concentrate viral, bacterial, and protozoan organisms in a single process by using size-exclusion-based filtration. In this study, two hollow-fiber ultrafilters with 50,000-molecular-weight cutoffs were evaluated to concentrate microorganisms from 2- and 10-liter water samples. When known quantities (105 to 106 CFU/liter) of two species of enteric bacteria were introduced and concentrated from 2 liters of sterile water, the addition of 0.1% Tween 80 increased Escherichia coli strain K-12 recoveries from 70 to 84% and Salmonella enterica serovar Enteritidis recoveries from 36 to 72%. An E. coli antibiotic-resistant strain, XL1-Blue, was recovered at a level (87%) similar to that for strain K-12 (96%) from 10 liters of sterile water. When E. coli XL1-Blue was introduced into 10 liters of nonsterile Rio Grande water with higher turbidity levels (23 to 29 nephelometric turbidity units) at two inoculum levels (9 × 105 and 2.4 × 103 per liter), the recovery efficiencies were 89 and 92%, respectively. The simultaneous addition of E. coli XL1-Blue (9 × 105 CFU/liter), Cryptosporidium parvum oocysts (10 oocysts/liter), phage T1 (105 PFU/liter), and phage PP7 (105 PFU/liter) to 10 liters of Rio Grande surface water resulted in mean recoveries of 96, 54, 59, and 46%, respectively. Using a variety of surface waters from around the United States, we obtained recovery efficiencies for bacteria and viruses that were similar to those observed with the Rio Grande samples, but recovery of Cryptosporidium oocysts was decreased, averaging 32% (the site of collection of these samples had previously been identified as problematic for oocyst recovery). Results indicate that the use of ultrafiltration for simultaneous recovery of bacterial, viral, and protozoan pathogens from variable surface waters is ready for field deployment.  相似文献   

9.
Climate change will strongly impact aquatic ecosystems particularly in arid and semi‐arid regions. Fish–parasite interactions will also be affected by predicted altered flow and temperature regimes, and other environmental stressors. Hence, identifying environmental and genetic factors associated with maintaining diversity at immune genes is critical for understanding species’ adaptive capacity. Here, we combine genetic (MHC class IIβ and microsatellites), parasitological and ecological data to explore the relationship between these factors in the remnant wild Rio Grande silvery minnow (Hybognathus amarus) population, an endangered species found in the southwestern United States. Infections with multiple parasites on the gills were observed and there was spatio‐temporal variation in parasite communities and patterns of infection among individuals. Despite its highly endangered status and chronically low genetic effective size, Rio Grande silvery minnow had high allelic diversity at MHC class IIβ with more alleles recognized at the presumptive DAB1 locus compared to the DAB3 locus. We identified significant associations between specific parasites and MHC alleles against a backdrop of generalist parasite prevalence. We also found that individuals with higher individual neutral heterozygosity and higher amino acid divergence between MHC alleles had lower parasite abundance and diversity. Taken together, these results suggest a role for fluctuating selection imposed by spatio‐temporal variation in pathogen communities and divergent allele advantage in maintenance of high MHC polymorphism. Understanding the complex interaction of habitat, pathogens and immunity in protected species will require integrated experimental, genetic and field studies.  相似文献   

10.
Synopsis A sweepstakes–mismatch process whereby reproduction is poorly coordinated with appropriate resources for larval development and recruitment can result in large variance in reproductive success among individuals and spawning aggregations. This process has been proposed to explain low ratio of genetic effective population size (Ne) to adult census size (N) ratios in marine species with high fecundity, pelagic spawning, and extensive mortality in early life stages. This process is also hypothesized to also account for very low Ne/N (≈ 0.001) observed in the federally endangered Rio Grande silvery minnow, Hybognathus amarus. This species is a freshwater fish that shares life-history features with marine pelagic spawners. We tested two key predictions of the sweepstakes–mismatch hypothesis using molecular data: (i) that temporally distinct samples of eggs differ in genetic composition and, (ii) that egg samples do not comprise a random subset of potential adult breeders. We present genetic data that supports both predictions and that are consistent with the hypothesis that high variance in reproductive success among adult breeders is an important factor that lowers Ne/N in H. amarus. This study highlights the importance of understanding the interaction of early life history and fragmentation in devising conservation plans for endangered aquatic organisms.  相似文献   

11.
The population behavior of Daphnia gessneri Herbst, 1967 in a floodplain lake (Lago Grande) of the lower Rio Solimões was investigated between April 1979 and March 1980 with regard to 1) predation by the fish called tambaqui (Colossoma macropomum, Characidae), 2) water level fluctuation and 3) water transparency. Zooplankton density samples were collected at two sites near mid-lake, where water depth and Secchi disc transparency were measured. In addition, qualitative samples of zooplankton and fish collections were taken at several sites in the adjacent floodplain areas. The author concludes that fluctuations in Daphnia gessneri populations correlate most with intense predation by fish and water turbidity.  相似文献   

12.
Three new species of Habenaria (Orchidaceae) section Nudae from Rio Grande do Sul, southern Brazil, are described and illustrated: Habenaria australis, H. kleinii and H. sobraliana. These are the first records of H. sect. Nudae for the state. Based on the examination of living and dried specimens, a total of 33 species and 400 collections of Habenaria were recorded for Rio Grande do Sul. Based on this survey, an updated checklist of the genus Habenaria for Rio Grande do Sul has been compiled. Four species are known only from this state, while seven other species are restricted to southern Brazil, Argentina and Uruguay. Habenaria hieronymi, previously known only from Argentina, is recorded for the first time from Brazil, and H. brachyphyton, H. ekmaniana and H. melanopoda are new records for Rio Grande do Sul.  相似文献   

13.
The present study was an attempt to investigate the hepatoprotective and antioxidative property of Phyllanthus amarus (P. amarus) extract and phyllanthin. Phyllanthin, one of the active lignin present in this plant species was isolated from the aerial parts, by silica gel column chromatography employing gradient elution with hexane-ethyl acetate solvent mixture. It was obtained in high yields (1.23%), compared to reported procedures and the purity was ascertained by HPTLC and reversed-phase HPLC analysis. Characterization of phyllanthin was done by mp, UV-Visible spectrophotometry, elemental analysis, FT-IR, 1H NMR, 13C NMR and mass spectral analysis. Free radical scavenging activity of P. amarus extract and phyllanthin was also examined using DPPH assay. The protective effect of P. amarus extract and phyllanthin was studied on CCl4-induced toxicity in human hepatoma HepG2 cell line. The results indicated that CCl4 treatment caused a significant decrease in cell viability. In addition, the toxin treatment initiated lipid peroxidation (LPO), caused leakage of enzymes like alanine transaminase (ALT) and lactate dehydrogenase (LDH) with a significant decrease in glutathione (GSH) levels. It was observed that phyllanthin effectively alleviated the changes induced by CCl4 in a concentration-dependent manner, with much smaller strengths as compared to P. amarus extract.  相似文献   

14.
Petunia bajeensis and P. riograndensis, two new species from southern Rio Grande do Sul, Brazil are described, and their morphological distinction from related species and features of their habitats are discussed.  相似文献   

15.
鞭根作为竹子吸收养分和水分的主要器官,其形态结构性状与鞭根对养分斑块的敏感性及养分获取能力紧密相关。该研究选取相邻连续的苦竹(Pleioblastus amarus)纯林和苦竹-杉木(Cunninghamia lanceolata)混交林2种林分类型,将其分为苦竹林中心区、苦竹林界面区、混交林界面区和混交林中心区4种生境,测定4种林区生境的苦竹鞭根形态结构性状指标及生物量,比较其间的连续性变化规律,以明确竹子异质性环境下的生态适应策略。结果表明:(1)不同生境下,纯林界面区的苦竹拥有更高的鞭根节点数、根尖数以及更小的根直径;纯林界面区和混交林界面区的苦竹鞭根比根长、比根面积均显著高于纯林中心区,但两个界面区的苦竹鞭根根直径则表现相反。(2)从苦竹纯林中心区至混交林中心区方向,苦竹鞭根生物量呈逐渐降低的趋势,但苦竹林界面区和混交林界面区间差异不显著。(3)生境对苦竹主要鞭根形态结构性状异速增长速率无明显影响,但显著提高了苦竹林界面区鞭根主要形态结构性状的差异性位移量;不同生境下苦竹鞭根形态结构存在显著差异,苦竹纯林界面区的鞭根形态结构可塑性较强,拥有更高的鞭根活性以及更活跃的生理功能。研究发现,生境对苦竹主要鞭根形态结构性状有显著影响,但对其异速增长速率无明显影响;鞭根直径是苦竹获取资源的重要影响因子,异质生境下苦竹趋向于采取增加鞭根面积和降低鞭根直径的策略以最大化地获取资源。  相似文献   

16.

Background  

The Rio Grande River is the natural boundary between U.S. and Mexico from El Paso, TX to Brownsville, TX. and is one of the major water resources of the area. Agriculture, farming, maquiladora industry, domestic activities, as well as differences in disposal regulations and enforcement increase the contamination potential of water supplies along the border region. Therefore, continuous and accurate assessment of the quality of water supplies is of paramount importance. The objectives of this study were to monitor water quality of the Rio Grande and to determine if any correlations exist between fecal coliforms, E. coli, chemical toxicity as determined by Botsford's assay, H. pylori presence, and environmental parameters. Seven sites along a 112-Km segment of the Rio Grande from Sunland Park, NM to Fort Hancock, TX were sampled on a monthly basis between January 2000 and December 2002.  相似文献   

17.
We examined feeding of blue catfish, Ictalurus furcatus, and flathead catfish, Pylodictis olivaris, collected from floodplain lake, secondary (side) river channel, and main river channel habitats in the lower Mississippi River (LMR), U.S.A. We described the feeding ecology of two large river catfish species within the context of whether off-channel habitats in the LMR (i.e., floodplain lakes and secondary channels) potentially provided energetic benefits to these fishes as purported in contemporary theory on the ecology of large rivers. We used diet composition and associated caloric densities of prey consumed as indicators of energetic benefit to catfishes. Differences in diet among habitats were strong for blue catfish, but weak for flathead catfish; consumed foods generally differed among habitats in caloric (energy) content. Caloric densities of consumed foods were generally greatest in floodplain lakes, least in the main river channel, and intermediate in secondary river channels. Strong between-year variation in diet was observed, but only for blue catfish. Blue catfish fed disproportionately on lower-energy zebra mussels in the main river channel during 1997, and higher-energy chironomids and oligochaetes in floodplain lakes during 1998. Results suggested that although off-channel habitats potentially provided greater energetic return to catfishes in terms of foods consumed, patterns of feeding and subsequent energy intake may vary annually. Energetic benefits associated with off-channel habitats as purported under contemporary theory (e.g., the ‘flood-pulse concept’) may not be accrued by catfishes every year in the LMR.  相似文献   

18.
In the southwestern United States (US), the Rio Grande chub (Gila pandora) is state-listed as a fish species of greatest conservation need and federally listed as sensitive due to habitat alterations and competition with non-native fishes. Characterizing genetic diversity, genetic population structure, and effective number of breeders will assist with conservation efforts by providing a baseline of genetic metrics. Genetic relatedness within and among G. pandora populations throughout New Mexico was characterized using 11 microsatellite loci among 15 populations in three drainage basins (Rio Grande, Pecos, Canadian). Observed heterozygosity (HO) ranged from 0.71–0.87 and was similar to expected heterozygosity (0.75–0.87). Rio Ojo Caliente (Rio Grande) had the highest allelic richness (AR = 15.09), while Upper Rio Bonito (Pecos) had the lowest allelic richness (AR = 6.75). Genetic differentiation existed among all populations with the lowest genetic variation occurring within the Pecos drainage. STRUCTURE analysis revealed seven genetic clusters. Populations of G. pandora within the upper Rio Grande drainage (Rio Ojo Caliente, Rio Vallecitos, Rio Pueblo de Taos) had high levels of admixture with Q-values ranging from 0.30–0.50. In contrast, populations within the Pecos drainage (Pecos River and Upper Rio Bonito) had low levels of admixture (Q = 0.94 and 0.87, respectively). Estimates of effective number of breeders (N b ) varied from 6.1 (Pecos: Upper Rio Bonito) to 109.7 (Rio Grande: Rio Peñasco) indicating that populations in the Pecos drainage are at risk of extirpation. In the event that management actions are deemed necessary to preserve or increase genetic diversity of G. pandora, consideration must be given as to which populations are selected for translocation.  相似文献   

19.
20.
1. We examined the role of flooding on the leaf nutrient content of riparian trees by comparing the carbon : nitrogen : phosphorus (C : N : P) ratio of leaves and litter of Rio Grande cottonwood (Populus deltoides ssp. wislizenii) in flood and non‐flood sites along the Middle Rio Grande, NM, U.S.A. The leaf C : N : P ratio was also examined for two non‐native trees, saltcedar (Tamarix chinensis) and Russian olive (Elaeagnus angustifolia), and six species of dominant riparian arthropods. 2. Living leaves and leaf litter of cottonwoods at flood sites had a significantly lower leaf N : P ratio and higher %P compared with leaves and litter at non‐flood sites. A non‐flood site downstream from wastewater effluent had a significantly lower litter C : N ratio than all other sites, suggesting N fertilisation through ground water. The non‐native trees, saltcedar and Russian olive, had higher mean leaf N content, N : P ratio, and lower C : N ratio compared with cottonwoods across study sites. 3. Riparian arthropods ranged from 5.2 to 7.1 for C : N ratio, 56–216 for C : P ratio, and 8.9–34 for N : P ratio. C content ranged from 25 to 52% of dry mass, N content from 4.7 to 10.8%, and P content from 0.59 to 1.2%. Differences in stoichiometry between high C : nutrient leaf litter and low C : nutrient invertebrates suggests possible food‐quality constraints for detritivores. 4. These results suggest that spatial and temporal variation in the C : N : P ratio of cottonwood leaves and leaf litter is influenced by surface and subsurface hydrologic connection within the floodplain. Reach‐scale variation in the elemental composition of riparian organic matter inputs may have important implications for decomposition, nutrient cycling, and food webs in river floodplain systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号