首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Molecular anatomy of placode development in Xenopus laevis   总被引:1,自引:0,他引:1  
  相似文献   

5.
The sensory nervous system in the vertebrate head arises from two different cell populations: neural crest and placodal cells. By contrast, in the trunk it originates from neural crest only. How do placode precursors become restricted exclusively to the head and how do multipotent ectodermal cells make the decision to become placodes or neural crest? At neural plate stages, future placode cells are confined to a narrow band in the head ectoderm, the pre-placodal region (PPR). Here, we identify the head mesoderm as the source of PPR inducing signals, reinforced by factors from the neural plate. We show that several independent signals are needed: attenuation of BMP and WNT is required for PPR formation. Together with activation of the FGF pathway, BMP and WNT antagonists can induce the PPR in na?ve ectoderm. We also show that WNT signalling plays a crucial role in restricting placode formation to the head. Finally, we demonstrate that the decision of multipotent cells to become placode or neural crest precursors is mediated by WNT proteins: activation of the WNT pathway promotes the generation of neural crest at the expense of placodes. This mechanism explains how the placode territory becomes confined to the head, and how neural crest and placode fates diversify.  相似文献   

6.
7.
8.
9.
Sensory nerves play a vital role in maintaining corneal transparency. They originate in the trigeminal ganglion, which is derived from two embryonic cell populations (cranial neural crest and ectodermal placode). Nonetheless, it is unclear whether corneal nerves arise from neural crest, from placode, or from both. Quail-chick chimeras and species-specific antibodies allowed tracing quail-derived neural crest or placode cells during trigeminal ganglion and corneal development, and after ablation of either neural crest or placode. Neural crest chimeras showed quail nuclei in the proximal part of the trigeminal ganglion, and quail nerves in the pericorneal nerve ring and in the cornea. In sharp contrast, placode chimeras showed quail nuclei in the distal part of the trigeminal ganglion, but no quail nerves in the cornea or in the pericorneal nerve ring. Quail placode-derived nerves were present, however, in the eyelids. Neural crest ablation between stages 8 and 9 resulted in diminished trigeminal ganglia and absence of corneal innervation. Ablation of placode after stage 11 resulted in loss of the ophthalmic branch of the trigeminal ganglion and reduced corneal innervation. Noninnervated corneas still became transparent. These results indicate for the first time that although both neural crest and placode contribute to the trigeminal ganglion, corneal innervation is entirely neural crest-derived. Nonetheless, proper corneal innervation requires presence of both cell types in the embryonic trigeminal ganglion. Also, complete lack of innervation has no discernible effect on development of corneal transparency or cell densities.  相似文献   

10.
11.
12.
Development of neural ectoderm, neural crest, and otic placode with special reference to a new placodal derivative, the ectodermal lining of the opercular cavity, is described in a teleost fish, the Atlantic cod Gadus morhua, from a stage-by-stage examination of embryonic development. The ectodermal lining of the opercular cavity forms by invagination of the otic placode. The neural plate “infolds” by a wave of cellular rearrangement that transforms the neural plate into a neural rod. This transformation creates a distinct dorsal ectodermal cell layer. When the neural rod is arranged as monostratified columnar cells in the forebrain and midbrain, dorsal ectoderm at the midbrain level thickens lateral to the neural rod to form a cell cluster—the presumptive neural crest and placode. Upon migration of the neural crest from the postoptic midbrain, the dorsolateral area of the dorsal ectoderm thickens and segregates from the neural crest as a placode that is continuous with the presumptive lens placode. As the neural crest migrates from the hindbrain, this placode extends along the hindbrain as a single continuous cluster of cells. At the onset of formation of the lens placode, this continuous placode becomes the placode in the postoptic area of the midbrain and separates into the otic placode at the hindbrain. The otic placode gives rise to the otic neuromast and probably the otic lateral line nerves rostrally and to the ectodermal cell lining of the opercular cavity and otic vesicles caudally. The opercular cavity forms by invagination of the otic placode, creating an internal lumen lined by ectoderm that becomes continuous with evaginated endodermal pharyngeal cells. Free neuromasts are observed along the trailing edge of the external opening of the opercular cavity, which lies horizontally, ventral to the otic vesicles. As embryos develop to hatching, the opening rotates and takes up a vertical position. The adult opercular apparatus, including associated bones and muscles, forms during larval stages. The otic neuromast may be a remnant of neuromasts in the spiracle organ. The spiracle opening lies between the mandibular and hyoid arches, whereas the opercular cavity opens between the hyoid and the first branchial arches. The spiracle opening is, therefore, not homologous with the external opening of the opercular cavity, although the cell lining of the spiracle opening may be of placodal origin. J Morphol 231:231–252, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Induction and specification of cranial placodes   总被引:1,自引:0,他引:1  
  相似文献   

14.
In the vertebrate head, the peripheral components of the sensory nervous system are derived from two embryonic cell populations, the neural crest and cranial sensory placodes. Both arise in close proximity to each other at the border of the neural plate: neural crest precursors abut the future central nervous system, while placodes originate in a common preplacodal region slightly more lateral. During head morphogenesis, complex events organise these precursors into functional sensory structures, raising the question of how their development is coordinated. Here we review the evidence that neural crest and placode cells remain in close proximity throughout their development and interact repeatedly in a reciprocal manner. We also review recent controversies about the relative contribution of the neural crest and placodes to the otic and olfactory systems. We propose that a sequence of mutual interactions between the neural crest and placodes drives the coordinated morphogenesis that generates functional sensory systems within the head.  相似文献   

15.
16.
17.
Cranial nerves govern sensory and motor information exchange between the brain and tissues of the head and neck. The cranial nerves are derived from two specialized populations of cells, cranial neural crest cells and ectodermal placode cells. Defects in either cell type can result in cranial nerve developmental defects. Although several signaling pathways are known to regulate cranial nerve formation our understanding of how intercellular signaling between neural crest cells and placode cells is coordinated during cranial ganglia morphogenesis is poorly understood. Sonic Hedgehog (Shh) signaling is one key pathway that regulates multiple aspects of craniofacial development, but whether it co-ordinates cranial neural crest cell and placodal cell interactions during cranial ganglia formation remains unclear. In this study we examined a new Patched1 (Ptch1) loss-of-function mouse mutant and characterized the role of Ptch1 in regulating Shh signaling during cranial ganglia development. Ptch1Wig/ Wig mutants exhibit elevated Shh signaling in concert with disorganization of the trigeminal and facial nerves. Importantly, we discovered that enhanced Shh signaling suppressed canonical Wnt signaling in the cranial nerve region. This critically affected the survival and migration of cranial neural crest cells and the development of placodal cells as well as the integration between neural crest and placodes. Collectively, our findings highlight a novel and critical role for Shh signaling in cranial nerve development via the cross regulation of canonical Wnt signaling.  相似文献   

18.
19.
In amniotes, the developmental potentials of neural crest cells differ between the cranium and the trunk. These differences may be attributable to the different expression patterns of Hox genes between cranial and trunk neural crest cells. However, little is known about the factors that control Hox genes expression in neural crest cells. The present data demonstrate that retinoic acid (RA) treatment and the activation of Wnt signaling induce Hoxa2 and Hoxd9 expression, respectively, in mouse mesencephalic neural crest cells, which never express Hox genes in vivo. Furthermore, Wnt signaling suppresses the induction of Hoxa2. We also demonstrate that these factors participate in the maintenance of Hoxa2 and Hoxd9 expression in mouse trunk neural crest cells. Our results suggest that RA and Wnt signaling function as environmental factors that regulate the expression of Hoxa2 and Hoxd9 in mouse neural crest cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号