首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
滕艳  杨晓 《生物技术通讯》2006,17(4):621-623
转化生长因子-β(TGF-β)超家族分子通过跨膜受体和胞浆内信号转导分子Smad进行信号转导,调节细胞的增殖、分化和凋亡。许多生长因子和激素通过其受体激活磷脂酰肌醇3-激酶(PI3K),PI3K可以使肌醇环上的3位羟基磷酸化,磷酸化的肌醇脂可招募和激活许多信号通路分子,促进细胞增殖、细胞迁移和细胞存活。近几年来的研究表明这两条信号通路通过多水平的相互作用共同调节细胞增殖、分化及凋亡,在维持组织稳态的过程中发挥重要的作用。  相似文献   

2.
大脑中神经元突触间的信号传递是由许多神经递质受体介导的。在过去,Richard L.Huganir实验室一直致力于神经递质受体功能调节的分子机制。而最近,该实验室又聚焦到大脑中一种最主要的兴奋性受体的研究——谷氨酸受体。谷氨酸受体主要可以分为两大类:AMPA受体和NMDA受体。AMPA受体主要介导了快速的兴奋性突触传递;而NMDA受体则在神经可塑性和发育中起到重要作用。实验发现,AMPA受体和NMDA受体都可以被一系列的蛋白激酶磷酸化,而磷酸化的水平则直接影响了这些受体的功能特性,包括通道电导和受体膜定位等。AMPA受体磷酸化的水平同时还在学习和记忆的细胞模型中发生改变,如长时程增强(LTP)和长时程抑制(LTD)。此外,AMPA受体中GluR1亚单位的磷酸化对于各种形式的可塑性以及空间记忆的维持有重要的作用。实验室主要研究突触部位谷氨酸受体在亚细胞水平的定位和聚集的分子机制。最近,一系列可以直接或间接与AMPA和NMDA受体相互作用的蛋白质得以发现,其中包括一个新发现的蛋白家族GRIPs(glutamate receptor interacting proteins)。GRIPs可以直接和AMPA受体的GluR2/3亚单位的C端结合。GRIPs包含7个PDZ结构域,可以介导蛋白与蛋白直接的相互连接,从而把各个AMPA受体交互连接在一起并与其他蛋白相连。另外,GluR2亚单位的c端还可以和兴奋性突触中的蛋白激酶C结合蛋白(PICK1)的PDZ结构域相互作用。另外,GluR2亚单位的C端也可以与一种参与膜融合的蛋白NSF相互作用。这些与AMPA受体相互作用的蛋白质对于受体在膜上的运输以及定位有至关重要的作用。同时,受体与PICK1和GRIP的结合对于小脑运动学习中的LTD有重要作用。总体上说,该实验室发现了一系列可以调节神经递质受体功能的分子机制,这些工作提示受体功能的调节可能是?  相似文献   

3.
G蛋白偶联受体(G protein-coupled receptors,GPCRs)是具有7个跨膜螺旋的蛋白质受体,是人体内最大的蛋白质超家族.GPCRs能调控细胞周期,参与多种植物信号通路以及影响一系列的代谢和分化活动.简要介绍了GPCR和G蛋白介导的信号转导机制,GPCRs的结构和植物GPCR及其在植物跨膜信号转导中的作用,并对GPCR的信号转导机制及植物抗病反应分子机制的研究提出展望.  相似文献   

4.
Notch基因编码着一类进化上高度保守的跨膜受体蛋白家族,其信号通路是由Notch受体、Notch配体、CSL DNA结合蛋白组成。该信号通路能够调节淋巴细胞的发育和分化过程,介导心血管系统的形成,参与肿瘤的发生和发展。近年来有研究表明,Notch信号通路在造血作用及白血病的发生过程中起关键作用。本文综述了Notch信号通路在淋巴细胞及造血干细胞的发育和分化中的作用,进一步探讨了其对造血作用和白血病发生发展的调节,以期能够对临床造血疾病的治疗提供帮助。  相似文献   

5.
丝裂原活化蛋白激酶(MAPK)信号通路的研究进展   总被引:12,自引:0,他引:12  
丝裂原活化蛋白激酶(MAPK)信号通路是广泛存在于各种细胞中的一条信号转导途径,由一组级联活化的丝/苏氨酸蛋白激酶组成,对于细胞周期的运行和基因表达具有重要调控作用。MAPK包括多个成员,活化后向核内迁移,磷酸化包括转录因子在内的核蛋白和膜受体,实现对基因转录和其他事件的调节。MAPK激酶(MAPKK)是MAPK的上游激活分子,催化MAPK的Tyr和Thr残基双特异性磷酸化。Mos是脊椎动物生殖细胞中特有的MAPKK,通过MAPKK/MAPK途径活化成熟促进因子,启动卵母细胞成熟发育并维持中期阻滞。MAPK的下游分子包括MAPK活化的蛋白激酶(MAPKAPK)、核转录因子、热休克蛋白和细胞质磷脂酶A2等,执行由MAPK所介导的细胞生命活动调节功能。  相似文献   

6.
IgE介导的肥大细胞脱颗粒信号转导途径的研究进展   总被引:1,自引:0,他引:1  
肥大细胞(mast cell,MC)是过敏性疾病的关键细胞之一.机体的过敏反应很大程度依赖于肥大细胞膜上的特异性受体FcεRI.肥大细胞膜上交联的FcεRI引发了下游的一系列信号事件并导致脱颗粒,包括细胞因子及趋化因子产生以及白三烯的释放.由于IgE在过敏反应中的重要作用,现在的研究主要集中在FcεRI下游的信号事件.其脱颗粒的分子机制是一个由多种蛋白质分子介导的,各个环节受到精确调控的复杂过程.对肥大细胞脱颗粒分子机制的深入研究将给过敏性疾病提供一个新的治疗方案.  相似文献   

7.
雌激素受体在脑内分布十分广泛,对脑功能具有重要作用。雌激素可以通过膜雌激素受体启动的信号转导通路(非基因组效应)作用于中枢神经系统的很多部位,而窖蛋白(caveolin)可以通过不同方式参与膜雌激素受体介导的脑功能调节。简要综述了脑内膜雌激素受体介导的信号转导通路与窖蛋白相关的研究进展。  相似文献   

8.
IAA对小麦胚芽鞘质膜蛋白磷酸化的影响   总被引:1,自引:0,他引:1  
磷酸化/ 脱磷酸化机制是众多信号转导过程中的重要环节,很多信号物质被细胞受体识别后引发蛋白激酶和蛋白磷酸酶活性变化,通过磷酸化/ 脱磷酸化进一步调节多种酶活性而产生各种生理效应。在对生长素IAA 的信号转导的研究中,发现IAA 处理的小麦胚芽鞘质膜蛋白中蛋白激酶的活性和蛋白磷酸化程度都发生改变,并找到两种受到调节的蛋白激酶。钙离子通道抑制剂LaCl3 阻断了IAA 的这种作用,表明Ca2+参与了IAA的信号转导过程。  相似文献   

9.
整合素在细胞响应机械应力中的作用   总被引:7,自引:1,他引:6  
机械应力在细胞生长、分化和基因表达等生理学过程和某些病理学过程中起了重要的作用.细胞粘附分子——整合素是机械信号转导中重要的跨膜分子.细胞通过整合素与胞外基质蛋白、细胞骨架蛋白以及聚焦粘附激酶等的反应,将感应的力信号转化为化学信号,从而调节细胞的生理机能,其中整合素与胞外基质蛋白之间的动态和特异性反应在细胞的机械信号转导过程中起了功能性作用.  相似文献   

10.
转化生长因子β(TGF-β)家族成员与各自的膜受体(Ⅰ型及Ⅱ型受体)结合后,通路限制性SMADs被磷酸化,并与共介导Smad4形成杂聚体而转位至细胞核,从而调节一些靶基因的转录而对TGF-β产生反应,抑制性SMADs对此过程有负性调节作用,由SMADs介导的TGF-β信号转导通路的异常在大肠癌的发生发展中发挥重要作用,主要包括膜受体,通路限制性SMADs和共介导Smad4的改变,而抑制SMADs的改变甚为少见。  相似文献   

11.
Most mammalian cell types depend on multiple Src family kinases (SFKs) to regulate diverse signaling pathways. Strict control of SFK activity is essential for normal cellular function, and loss of kinase regulation contributes to several forms of cancer and other diseases. Previous x-ray crystal structures of the SFKs c-Src and Hck revealed that intramolecular association of their Src homology (SH) 3 domains and SH2 kinase linker regions has a key role in down-regulation of kinase activity. However, the amino acid sequence of the Hck linker represents a suboptimal ligand for the isolated SH3 domain, suggesting that it may form the polyproline type II helical conformation required for SH3 docking only in the context of the intact structure. To test this hypothesis directly, we determined the crystal structure of a truncated Hck protein consisting of the SH2 and SH3 domains plus the linker. Despite the absence of the kinase domain, the structures and relative orientations of the SH2 and SH3 domains in this shorter protein were very similar to those observed in near full-length, down-regulated Hck. However, the SH2 kinase linker adopted a modified topology and failed to engage the SH3 domain. This new structure supports the idea that these noncatalytic regions work together as a “conformational switch” that modulates kinase activity in a manner unique to the SH3 domain and linker topologies present in the intact Hck protein. Our results also provide fresh structural insight into the facile induction of Hck activity by HIV-1 Nef and other Hck SH3 domain binding proteins and implicate the existence of innate conformational states unique to individual Src family members that “fine-tune” their sensitivities to activation by SH3-based ligands.  相似文献   

12.
B lymphocytes and T lymphocytes utilize several proteins with common functions to transduce signals from their respective receptors. However, at the hierarchial signalling level of SLP-76 [Src homology 2(SH2) domain-containing leukocyte protein of 76-kDa] and LAT (linker for activation of T cells) in T cells, the only corresponding protein in B cells was known to be BLNK (B cell linker protein). It was thought that perhaps BLNK performed the cognate roles of SLP-76 and LAT in B cells; however, mounting evidence to the contrary revealed that this hypothesis was not robust. Two laboratories have recently described the characterization of a protein expressed in B cells and myeloid cells, alternatively termed NTAL (non-T cell activation linker) or LAB (linker for activation of B cells). NTAL/LAB and LAT may have arisen from a primordial gene-duplicating event, but genes that code for the two proteins do not share a very high degree of sequence identity. Wange discusses the results of the two reports, the evidence for functional homology between LAT and NTAL/LAB, and the possibility that the differences between them might lead to specific clinical therapeutics to manipulate immune cell responses.  相似文献   

13.
The hemopoietic-specific Gads (Grb2-related adaptor downstream of Shc) adaptor protein possesses amino- and carboxyl-terminal Src homology 3 (SH3) domains flanking a central SH2 domain and a unique region rich in glutamine and proline residues. Gads functions to couple the activated TCR to distal signaling events through its interactions with the leukocyte-specific signaling proteins SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) and LAT (linker for activated T cells). Expression library screening for additional Gads-interacting molecules identified the hemopoietic progenitor kinase-1 (HPK1), and we investigated the HPK1-Gads interaction within the DO11.10 murine T cell hybridoma system. Our results demonstrate that HPK1 inducibly associates with Gads and becomes tyrosine phosphorylated following TCR activation. HPK1 kinase activity is up-regulated in response to activation of the TCR and requires the presence of its proline-rich motifs. Mapping experiments have revealed that the carboxyl-terminal SH3 domain of Gads and the fourth proline-rich region of HPK1 are essential for their interaction. Deletion of the fourth proline-rich region of HPK1 or expression of a Gads SH2 mutant in T cells inhibits TCR-induced HPK1 tyrosine phosphorylation. Together, these data suggest that HPK1 is involved in signaling downstream from the TCR, and that SH2/SH3 domain-containing adaptor proteins, such as Gads, may function to recruit HPK1 to the activated TCR complex.  相似文献   

14.
Csk (C-terminal Src kinase), a protein tyrosine kinase, consisting of the Src homology 2 and 3 (SH2 and SH3) domains and a catalytic domain, phosphorylates the C-terminal tail of Src-family members, resulting in downregulation of the Src family kinase activity. The Src family kinases share 37 % homology with Csk but, unlike Src-family kinases, the catalytic domain of Csk alone is weakly active and can be stimulated in trans by interacting with the Csk-SH3 domain, suggesting a mode of intradomain regulation different from that of Src family kinases. The structural determinants of this intermolecular interaction were studied by nuclear magnetic resonance (NMR) and site-directed mutagenesis techniques. Chemical shift perturbation of backbone nuclei (H' and (15)N) has been used to map the Csk catalytic domain binding site on the Csk-SH3. The experimentally determined interaction surface includes three structural elements: the N-terminal tail, a small part of the RT-loop, and the C-terminal SH3-SH2 linker. Site-directed mutagenesis revealed that mutations in the SH3-SH2 linker of the wild-type Csk decrease Csk kinase activity up to fivefold, whereas mutations in the RT-loop left Csk kinase activity largely unaffected. We conclude that the SH3-SH2 linker plays a major role in the activation of the Csk catalytic domain.  相似文献   

15.
The focal adhesion kinase (FAK), a protein-tyrosine kinase (PTK), associates with integrin receptors and is activated by cell binding to extracellular matrix proteins, such as fibronectin (FN). FAK autophosphorylation at Tyr-397 promotes Src homology 2 (SH2) domain binding of Src family PTKs, and c-Src phosphorylation of FAK at Tyr-925 creates an SH2 binding site for the Grb2 SH2-SH3 adaptor protein. FN-stimulated Grb2 binding to FAK may facilitate intracellular signaling to targets such as ERK2-mitogen-activated protein kinase. We examined FN-stimulated signaling to ERK2 and found that ERK2 activation was reduced 10-fold in Src- fibroblasts, compared to that of Src- fibroblasts stably reexpressing wild-type c-Src. FN-stimulated FAK phosphotyrosine (P.Tyr) and Grb2 binding to FAK were reduced, whereas the tyrosine phosphorylation of another signaling protein, p130cas, was not detected in the Src- cells. Stable expression of residues 1 to 298 of Src (Src 1-298, which encompass the SH3 and SH2 domains of c-Src) in the Src- cells blocked Grb2 binding to FAK; but surprisingly, Src 1-298 expression also resulted in elevated p130cas P.Tyr levels and a two- to threefold increase in FN-stimulated ERK2 activity compared to levels in Src- cells. Src 1-298 bound to both FAK and p130cas and promoted FAK association with p130cas in vivo. FAK was observed to phosphorylate p130cas in vitro and could thus phosphorylate p130cas upon FN stimulation of the Src 1-298-expressing cells. FAK-induced phosphorylation of p130cas in the Src 1-298 cells promoted the SH2 domain-dependent binding of the Nck adaptor protein to p130cas, which may facilitate signaling to ERK2. These results show that there are additional FN-stimulated pathways to ERK2 that do not involve Grb2 binding to FAK.  相似文献   

16.
Adapter proteins play a critical role in regulating signals triggered by Ag receptor cross-linking. These small molecules link receptor proximal events with downstream signaling pathways. In this study, we explore the expression and function of the Grb2-related protein of the lymphoid system (GrpL)/Grb2-related adaptor downstream of Shc adapter protein in human B cells. GrpL is expressed in naive B cells and is down-regulated following B cell Ag receptor ligation. By contrast, germinal center and memory B cells express little or no GrpL. Using human B cell lines, we detected constitutive interactions between GrpL and B cell linker protein, Src homology (SH)2 domain-containing leukocyte protein of 76 kDa, hemopoietic progenitor kinase 1, and c-Cbl. The N-terminal SH3 domain of GrpL binds c-Cbl while the C-terminal SH3 domain binds B cell linker protein and SH2 domain-containing leukocyte protein of 76 kDa. Exogenous expression of GrpL in a GrpL-negative B cell line leads to enhanced Ag receptor-induced extracellular signal-related kinase and p38 mitogen-activated protein kinase phosphorylation. Thus, GrpL expression in human B cell subsets appears to regulate Ag receptor-mediated signaling events.  相似文献   

17.
The Src homology (SH) region 2 binds to phosphorylated tyrosine residues and SH3 domains may interact with cytoskeletal molecules and GTPase-activating proteins for Rho/Rac proteins (the small GTP-binding proteins related to Ras). The recently cloned Ash/Grb-2 protein, a 25-28 kDa molecule composed entirely of SH2 and SH3 domains, is a mammalian homolog of the Caenorhabditis elegans Sem-5 protein, which communicates between a receptor protein tyrosine kinase and a Ras protein. In the present study the function of Ash/Grb-2 was investigated by microinjecting cells with an anti-Ash antibody. The antibody abolished both S phase entry and the reorganization of actin assembly to ruffle formation upon stimulation with epidermal growth factor (EGF) and platelet-derived growth factor (PDGF). On the other hand, anti-Ash antibody had no effect on S phase entry or actin stress fiber formation induced by either serum or lysophosphatidic acid. Since the induction of DNA synthesis, ruffle induction and stress fiber formation involve a function of Ras, Rac activation and Rho activation respectively, the findings strongly suggest that Ash plays a critical role in the signaling of both pathways downstream from growth factor receptors to Ras and Rac. Consistent with this, Ash co-precipitated with EGF receptor from EGF-stimulated cells. Other proteins of approximately 21, 29, 135 and 160 kDa were also detected in the anti-Ash antibody immunoprecipitates, suggesting a role of Ash as a linker molecule in signal transduction downstream of growth factor receptors.  相似文献   

18.
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells. Through phosphorylation of proteins assembled at the cytoplasmic tails of integrins, FAK promotes signaling events that modulate cellular growth, survival, and migration. The amino-terminal region of FAK contains a region of sequence homology with band 4.1 and ezrin/radixin/moesin (ERM) proteins termed a FERM domain. FERM domains are found in a variety of signaling and cytoskeletal proteins and are thought to mediate intermolecular interactions with partner proteins and phospholipids at the plasma membrane and intramolecular regulatory interactions. Here we report two crystal structures of an NH2-terminal fragment of avian FAK containing the FERM domain and a portion of the regulatory linker that connects the FERM and kinase domains. The tertiary folds of the three subdomains (F1, F2, and F3) are similar to those of known FERM structures despite low sequence conservation. Differences in the sequence and relative orientation of the F3 subdomain alters the nature of the interdomain interface, and the phosphoinositide binding site found in ERM family FERM domains is not present in FAK. A putative protein interaction site on the F3 lobe is masked by the proximal region of the linker. Additionally, in one structure the adjacent Src SH3 and SH2 binding sites in the linker associate with the surfaces of the F3 and F1 lobes, respectively. These structural features suggest the possibility that protein interactions of the FAK FERM domain can be regulated by binding of Src kinases to the linker segment.  相似文献   

19.
Adapter proteins such as Grb2 play a central role in the formation of signaling complexes through their association with multiple protein binding partners. These interactions are mediated by specialized domains such as the well-characterized Src homology SH2 and SH3 motifs. Using yeast three-hybrid technology, we have identified a novel adapter protein, expressed predominantly in T lymphocytes, that associates with the activated form of the costimulatory receptor, CD28. The protein is a member of the Grb2 family of adapter proteins and contains an SH3-SH2-SH3 domain structure. A unique glutamine/proline-rich domain (insert domain) of unknown function is situated between the SH2 and N-terminal SH3 domains. We term this protein GRID for Grb2-related protein with insert domain. GRID coimmunoprecipitates with CD28 from Jurkat cell lysates following activation of CD28. Using mutants of CD28 and GRID, we demonstrate that interaction between the proteins is dependent on phosphorylation of CD28 at tyrosine 173 and integrity of the GRID SH2 domain, although there are also subsidiary stabilizing contacts between the PXXP motifs of CD28 and the GRID C-terminal SH3 domain. In addition to CD28, GRID interacts with a number of other T cell signaling proteins, including SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa), p62dok, and RACK-1 (receptor for activated protein kinase C-1). These findings suggest that GRID functions as an adapter protein in the CD28-mediated costimulatory pathway in T cells.  相似文献   

20.
The tec family kinase, inducible T cell tyrosine kinase (Itk), is critical for both development and activation of T lymphocytes. We have found that Itk regulates TCR/CD3-induced actin-dependent cytoskeletal events. Expression of Src homology (SH) 2 domain mutant Itk transgenes into Jurkat T cells inhibits these events. Furthermore, Itk(-/-) murine T cells display significant defects in TCR/CD3-induced actin polymerization. In addition, Jurkat cells deficient in linker for activation of T cells expression, an adaptor critical for Itk activation, display impaired cytoskeletal events and expression of SH3 mutant Itk transgenes reconstitutes this impairment. Interestingly, expression of an Itk kinase-dead mutant transgene into Jurkat cells has no effect on cytoskeletal events. Collectively, these data suggest that Itk regulates TCR/CD3-induced actin-dependent cytoskeletal events, possibly in a kinase-independent fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号