首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cryptosporidium parvum invades target epithelia via a mechanism that involves host cell actin reorganization. We previously demonstrated that C. parvum activates the Cdc42/neural Wiskott-Aldrich syndrome protein network in host cells resulting in actin remodeling at the host cell-parasite interface, thus facilitating C. parvum cellular invasion. Here, we tested the role of phosphatidylinositol 3-kinase (PI3K) and frabin, a guanine nucleotide exchange factor specific for Cdc42 in the activation of Cdc42 during C. parvum infection of biliary epithelial cells. We found that C. parvum infection of cultured human biliary epithelial cells induced the accumulation of PI3K at the host cell-parasite interface and resulted in the activation of PI3K in infected cells. Frabin also was recruited to the host cell-parasite interface, a process inhibited by two PI3K inhibitors, wortmannin and LY294002. The cellular expression of either a dominant negative mutant of PI3K (PI3K-Deltap85) or functionally deficient mutants of frabin inhibited C. parvum-induced Cdc42 accumulation at the host cell-parasite interface. Moreover, LY294002 abolished C. parvum-induced Cdc42 activation in infected cells. Inhibition of PI3K by cellular overexpression of PI3K-Deltap85 or by wortmannin or LY294002, as well as inhibition of frabin by various functionally deficient mutants, decreased C. parvum-induced actin accumulation and inhibited C. parvum cellular invasion. In contrast, the overexpression of the p85 subunit of PI3K promoted C. parvum invasion. Our data suggest that an important component of the complex process of C. parvum invasion of target epithelia results from the ability of the organism to trigger host cell PI3K/frabin signaling to activate the Cdc42 pathway, resulting in host cell actin remodeling at the host cell-parasite interface.  相似文献   

2.
Infection of epithelial cells by Cryptosporidium parvum triggers a variety of host-cell innate and adaptive immune responses including release of cytokines/chemokines and up-regulation of antimicrobial peptides. The mechanisms that trigger these host-cell responses are unclear. Thus, we evaluated the role of TLRs in host-cell responses during C. parvum infection of cultured human biliary epithelia (i.e., cholangiocytes). We found that normal human cholangiocytes express all known TLRs. C. parvum infection of cultured cholangiocytes induces the selective recruitment of TLR2 and TLR4 to the infection sites. Activation of several downstream effectors of TLRs including IL-1R-associated kinase, p-38, and NF-kappaB was detected in infected cells. Transfection of cholangiocytes with dominant-negative mutants of TLR2 and TLR4, as well as the adaptor molecule myeloid differentiation protein 88 (MyD88), inhibited C. parvum-induced activation of IL-1R-associated kinase, p-38, and NF-kappaB. Short-interfering RNA to TLR2, TLR4, and MyD88 also blocked C. parvum-induced NF-kappaB activation. Moreover, C. parvum selectively up-regulated human beta-defensin-2 in directly infected cells, and inhibition of TLR2 and TLR4 signals or NF-kappaB activation were each associated with a reduction of C. parvum-induced human beta-defensin-2 expression. A significantly higher number of parasites were detected in cells transfected with a MyD88 dominant-negative mutant than in the control cells at 48-96 h after initial exposure to parasites, suggesting MyD88-deficient cells were more susceptible to infection. These findings demonstrate that cholangiocytes express a variety of TLRs, and suggest that TLR2 and TLR4 mediate cholangiocyte defense responses to C. parvum via activation of NF-kappaB.  相似文献   

3.
4.
The family of p21-activated kinases (PAKs) have been implicated in the rearrangement of actin cytoskeleton by acting downstream of the small GTPases Rac and Cdc42. Here we report that even though Cdc42/Rac1 or Akt are not activated, phosphatidylinositol-3 (PI-3) kinase activation induces PAK1 kinase activity. Indeed, we demonstrate that PI-3 kinase associates with the N-terminal regulatory domain of PAK1 (amino acids 67-150) leading to PAK1 activation. The association of the PI-3 kinase with the Cdc42/Rac1 binding-deficient PAK1(H83,86L) confirms that the small GTPases are not involved in the PI-3 kinase-PAK1 interaction. Furthermore, PAK1 was activated in cells expressing the dominant-negative forms of Cdc42 or Rac1. Additionally, we show that PAK1 phosphorylates actin, resulting in the dissolution of stress fibers and redistribution of microfilaments. The phosphorylation of actin was inhibited by the kinase-dead PAK1(K299R) or the PAK1 autoinhibitory domain (PAK1(83-149)), indicating that PAK1 was responsible for actin phosphorylation. We conclude that the association of PI-3 kinase with PAK1 regulates PAK1 kinase activity through a Cdc42/Rac1-independent mechanism leading to actin phosphorylation and cytoskeletal reorganization.  相似文献   

5.
The human prostate cancer cell line LNCaP bears functional membrane testosterone receptors, which modify the actin cytoskeleton and increase the secretion of prostate-specific antigen (PSA) within minutes. Membrane steroid receptors are, indeed, a newly identified element of steroid action that is different from the classical intracellular sites. In the present work, using a nonpermeable analog of testosterone (testosterone-BSA), we investigated the signaling pathway that is triggered by the membrane testosterone receptors' activation and leads to actin cytoskeleton reorganization. We report that exposure of cells to testosterone-BSA resulted in phosphorylation of focal adhesion kinase (FAK), the association of FAK with the phosphatidylinositol-3 (PI-3) kinase, and the subsequent activation of the latter as well as the activation of the small guanosine triphosphatases Cdc42/Rac1. Pretreatment of cells with the specific PI-3 kinase inhibitor wortmannin abolished both the activation of the small guanosine triphosphatases and the alterations of actin cytoskeleton, whereas it did not affect the phosphorylation of FAK. These findings indicate that PI-3 kinase is activated downstream of FAK and upstream of Cdc42/Rac1, which subsequently regulate the actin organization. Moreover, wortmannin diminished the secretion of PSA, implying that the signaling events described above are responsible for the testosterone-BSA-induced PSA secretion. Our results are discussed under the prism of a possible implication of these membrane receptors in prostate cancer chemotherapy.  相似文献   

6.
Cryptosporidium sp. cause human and animal diarrheal disease worldwide. The molecular mechanisms underlying Cryptosporidium attachment to, and invasion of, host cells are poorly understood. Previously, we described a surface-associated Gal/GalNAc-specific lectin activity in sporozoites of Cryptosporidium parvum. Here we describe p30, a 30-kDa Gal/GalNAc-specific lectin isolated from C. parvum and Cryptosporidium hominis sporozoites by Gal-affinity chromatography. p30 is encoded by a single copy gene containing a 906-bp open reading frame, the deduced amino acid sequence of which predicts a 302-amino acid, 31.8-kDa protein with a 22-amino acid N-terminal signal sequence. The p30 gene is expressed at 24-72 h after infection of intestinal epithelial cells. Antisera to recombinant p30 expressed in Escherichia coli react with an approximately 30-kDa protein in C. parvum and C. hominis. p30 is localized to the apical region of sporozoites and is predominantly intracellular in both sporozoites and intracellular stages of the parasite. p30 associates with gp900 and gp40, Gal/GalNAc-containing mucin-like glycoproteins that are also implicated in mediating infection. Native and recombinant p30 bind to Caco-2A cells in a dose-dependent, saturable, and Gal-inhibitable manner. Recombinant p30 inhibits C. parvum attachment to and infection of Caco-2A cells, whereas antisera to the recombinant protein also inhibit infection. Taken together, these findings suggest that p30 mediates C. parvum infection in vitro and raise the possibility that this protein may serve as a target for intervention.  相似文献   

7.
Human herpesvirus 8 (HHV-8; Kaposi's sarcoma-associated herpesvirus) envelope glycoprotein gB possesses an RGD motif, interacts with alpha 3 beta 1 integrin, and uses it as one of the entry receptors. HHV-8 induces the integrin-dependent focal adhesion kinase (FAK), a critical step in the outside-in signaling pathways necessary for the subsequent phosphorylation of other cellular kinases, cytoskeletal rearrangements, and other functions. As an initial step toward deciphering the role of HHV-8 gB-integrin interaction in infection, signal pathways induced by gB were examined. A truncated form of gB without the transmembrane and carboxyl domains (gB Delta TM), a gB Delta TM mutant form (gB Delta TM-RGA) with an RGD-to-RGA mutation, and inhibitors of cellular kinases were used. HHV-8 gB Delta TM, but not gB Delta TM-RGA, induced FAK phosphorylation in target cells, which was in part dependent on the presence of alpha 3 beta 1 integrin. FAK was critical for the subsequent phosphorylation of Src by gB Delta TM, and Src induction was essential for the phosphorylation of phosphatidylinositol 3-kinase (PI-3K). HHV-8 gB Delta TM-induced PI-3K was essential for the induction of RhoA and Cdc42 Rho GTPases that was accompanied by the cytoskeletal rearrangements. These gB-induced morphological changes were inhibited by the PI-3K inhibitors. Ezrin, one of the essential elements required to cross-link the actin cytoskeleton with the plasma membrane and to induce the morphological changes, was induced by the Rho GTPases. Inhibition of cellular tyrosine kinases by the brief treatment of cells with 4',5,7-trihydroxyisoflavone (genistein) blocked the entry of HHV-8 into target cells. These findings suggest that, independently of other viral glycoproteins and via its RGD motif, HHV-8 gB induces integrin-dependent pre-existing FAK-Src-PI-3K-Rho GTPase kinases. Since these signal pathways play vital roles in host cell endocytosis and movement of particulate materials in the cytoplasm, the early stages of HHV-8 gB interaction with host cells may provide a very conducive environment for the successful infection of target cells.  相似文献   

8.
9.
In neuroendocrine cells, actin reorganization is a prerequisite for regulated exocytosis. Small GTPases, Rho proteins, represent potential candidates coupling actin dynamics to membrane trafficking events. We previously reported that Cdc42 plays an active role in regulated exocytosis in chromaffin cells. The aim of the present work was to dissect the molecular effector pathway integrating Cdc42 to the actin architecture required for the secretory reaction in neuroendocrine cells. Using PC12 cells as a secretory model, we show that Cdc42 is activated at the plasma membrane during exocytosis. Expression of the constitutively active Cdc42(L61) mutant increases the secretory response, recruits neural Wiskott-Aldrich syndrome protein (N-WASP), and enhances actin polymerization in the subplasmalemmal region. Moreover, expression of N-WASP stimulates secretion by a mechanism dependent on its ability to induce actin polymerization at the cell periphery. Finally, we observed that actin-related protein-2/3 (Arp2/3) is associated with secretory granules and that it accompanies granules to the docking sites at the plasma membrane upon cell activation. Our results demonstrate for the first time that secretagogue-evoked stimulation induces the sequential ordering of Cdc42, N-WASP, and Arp2/3 at the interface between granules and the plasma membrane, thereby providing an actin structure that makes the exocytotic machinery more efficient.  相似文献   

10.
Actin cytoskeleton plays an important role in the establishment of epithelial cell polarity. Cdc42, a member of Rho GTPase family, modulates actin dynamics via its regulators, such as IQGAP proteins. Gastric parietal cells are polarized epithelial cells in which regulated acid secretion occurs in the apical membrane upon stimulation. We have previously shown that actin isoforms are polarized to different membrane domains and that the integrity of the actin cytoskeleton is essential for acid secretion. Herein, we show that Cdc42 is preferentially distributed to the apical membrane of gastric parietal cells. In addition, we revealed that two Cdc42 regulators, IQGAP1 and IQGAP2, are present in gastric parietal cells. Interestingly, IQGAP2 is polarized to the apical membrane of the parietal cells, whereas IQGAP1 is mainly distributed to the basolateral membrane. An IQGAP peptide that competes with full-length IQGAP proteins for Cdc42-binding in vitro also inhibits acid secretion in streptolysin-O-permeabilized gastric glands. Furthermore, this peptide disrupts the association of IQGAP and Cdc42 with the apical actin cytoskeleton and prevents the apical membrane remodeling upon stimulation. We propose that IQGAP2 forms a link that associates Cdc42 with the apical cytoskeleton and thus allows for activation of polarized secretion in gastric parietal cells.  相似文献   

11.
Syndecan-4 (SDC4) is a transmembrane heparin sulfate proteoglycan that regulates inflammatory responses, cell motility, cell adhesion and intracellular signaling. In this study, we found that overexpression of SDC4 promoted the infection efficiency of Mycobacterium tuberculosis (Mtb), whereas knockdown of SDC4 reduced the infection efficiency, suggesting that SDC4 assisted Mtb infection of epithelial cells. We also observed that Mtb infection affected the F-actin/G-actin ratio, which was also correlated with SDC4 expression levels. Analysis of the Cdc42, N-WASP, and Arp2/3 signaling pathways during Mtb infection revealed that knockdown of Cdc42 and N-WASP or the addition of ZCL278, Wiskostatin or CK636 (blockers of Cdc42, N-WASP, and Arp2/3, respectively) significantly exacerbated Mtb infection in lung epithelial cells. Taken together, our data indicate that SDC4 assists Mtb infection of epithelial cells by regulating the Cdc42, N-WASP, and Arp2/3 signaling pathways, which regulate the polymerization of the actin cytoskeleton.  相似文献   

12.
The Rho family GTPase Cdc42 is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. In yeast, the role of Cdc42 in polarization of cell growth includes polarization of the actin cytoskeleton, which delivers secretory vesicles to growth sites at the plasma membrane. We now describe a novel temperature-sensitive mutant, cdc42-6, that reveals a role for Cdc42 in docking and fusion of secretory vesicles that is independent of its role in actin polarization. cdc42-6 mutants can polarize actin and deliver secretory vesicles to the bud, but fail to fuse those vesicles with the plasma membrane. This defect is manifested only during the early stages of bud formation when growth is most highly polarized, and appears to reflect a requirement for Cdc42 to maintain maximally active exocytic machinery at sites of high vesicle throughput. Extensive genetic interactions between cdc42-6 and mutations in exocytic components support this hypothesis, and indicate a functional overlap with Rho3, which also regulates both actin organization and exocytosis. Localization data suggest that the defect in cdc42-6 cells is not at the level of the localization of the exocytic apparatus. Rather, we suggest that Cdc42 acts as an allosteric regulator of the vesicle docking and fusion apparatus to provide maximal function at sites of polarized growth.  相似文献   

13.
Glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present at the surface of living cells in cholesterol dependent nanoscale clusters. These clusters appear to act as sorting signals for the selective endocytosis of GPI-APs via a Cdc42-regulated, dynamin and clathrin-independent pinocytic pathway called the GPI-AP-enriched early endosomal compartments (GEECs) pathway. Here we show that endocytosis via the GEECs pathway is inhibited by mild depletion of cholesterol, perturbation of actin polymerization or overexpression of the Cdc42/Rac-interactive-binding (CRIB) motif of neural Wiskott-Aldrich syndrome protein (N-WASP). Consistent with the involvement of Cdc42-based actin nanomachinery, nascent endocytic vesicles containing cargo for the GEEC pathway co-localize with fluorescent protein-tagged isoforms of Cdc42, CRIB domain, N-WASP and actin; high-resolution electron microscopy on plasma membrane sheets reveals Cdc42-labelled regions rich in green fluorescent protein-GPI. Using total internal reflection fluorescence microscopy at the single-molecule scale, we find that mild cholesterol depletion alters the dynamics of actin polymerization at the cell surface by inhibiting Cdc42 activation and consequently its stabilization at the cell surface. These results suggest that endocytosis into GEECs occurs through a cholesterol-sensitive, Cdc42-based recruitment of the actin polymerization machinery.  相似文献   

14.
Actin reorganization is important for regulation of neuronal morphology. Neural Wiskott-Aldrich syndrome protein (N-WASP) is an important regulator of actin polymerization and also known to be strongly expressed in brain. Recently, Toca-1 (transducer of Cdc42-dependent actin assembly) has been shown to be required for Cdc42 to activate N-WASP from biochemical experiments. Toca-1 has three functional domains: an F-BAR/EFC domain at the N terminus, an HR1 at the center, and an SH3 domain at the C terminus. The F-BAR/EFC domain induces tubular invagination of plasma membrane, while Toca-1 binds both N-WASP and Cdc42 through the SH3 domain and the HR1, respectively. However, the physiological role of Toca-1 is completely unknown. Here we have investigated the neural function of Toca-1. Toca-1 is strongly expressed in neurons including hippocampal neurons in developing brain at early times. Knockdown of Toca-1 in PC12 cells significantly enhances neurite elongation. Consistently, overexpression of Toca-1 suppresses neurite elongation through the F-BAR/EFC domain with a membrane invaginating property, suggesting an implication of membrane trafficking in the neural function of Toca-1. In addition, knockdown of N-WASP, to our surprise, also enhances neurite elongation in PC12 cells, which is in clear contrast to the previous report that dominant negative mutants of N-WASP suppress neurite extension in PC12 cells. On the other hand, knockdown of Toca-1 in cultured rat hippocampal neurons enhances axon branching a little but not axon elongation, while knockdown of N-WASP enhances both axon elongation and branching. These results suggest that a vesicle trafficking regulator Toca-1 regulates different aspects of neuronal morphology from N-WASP.  相似文献   

15.
To infect host cells, Salmonella utilizes an intricate system to manipulate the actin cytoskeleton and promote bacterial uptake. Proteins injected into the host cell by Salmonella activate the Rho GTPases, Rac1 and Cdc42, to induce actin polymerization. Following uptake, a different set of proteins inactivates Rac1 and Cdc42, returning the cytoskeleton to normal. Although the signaling pathways allowing Salmonella to invade host cells are beginning to be understood, many of the contributing factors remain to be elucidated. IQGAP1 is a multidomain protein that influences numerous cellular functions, including modulation of Rac1/Cdc42 signaling and actin polymerization. Here, we report that IQGAP1 regulates Salmonella invasion. Through its interaction with actin, IQGAP1 co-localizes with Rac1, Cdc42, and actin at sites of bacterial uptake, whereas infection promotes the interaction of IQGAP1 with both Rac1 and Cdc42. Knockdown of IQGAP1 significantly reduces Salmonella invasion and abrogates activation of Cdc42 and Rac1 by Salmonella. Overexpression of IQGAP1 significantly increases the ability of Salmonella to enter host cells and required interaction with both actin and Cdc42/Rac1. Together, these data identify IQGAP1 as a novel regulator of Salmonella invasion.  相似文献   

16.
Lipophosphoglycan (LPG), the major surface glycoconjugate on Leishmania donovani promastigotes, is crucial for the establishment of infection inside macrophages. LPG comprises a polymer of repeating Galβ1,4Manα-PO4 attached to a lysophosphatidylinositol membrane anchor. LPG is transferred from the parasite to the host macrophage membrane during phagocytosis and induces periphagosomal F-actin accumulation correlating with an inhibition of phagosomal maturation. The biophysical properties of LPG suggest that it may be intercalated into membrane rafts of the host-cell membrane. The aim of this study was to investigate if the effects of LPG on phagosomal maturation are mediated via action on membrane rafts. We show that LPG accumulates in rafts during phagocytosis of L. donovani and that disruption of membrane rafts abolished the effects of LPG on periphagosomal F-actin and phagosomal maturation, indicating that LPG requires intact membrane rafts to manipulate host-cell functions. We conclude that LPG associates with membrane rafts in the host cell and exert its actions on host-cell actin and phagosomal maturation through subversion of raft function.  相似文献   

17.
The cytoplasmic domain of cadherins and the associated catenins link the cytoskeleton with signal transduction pathways. To study the signaling function of non-junctional VE-cadherin, which can form during the loss VE-cadherin homotypic adhesion, wild type VE-cadherin or VE-cadherin cytoplasmic domain (DeltaEXD) was expressed in sub-confluent endothelial cells. We observed that Cdc42 was activated in transfected cells and that these cells also developed Cdc42-dependent >70-microm-long plasma membrane protrusions. The formation of these structures required actin polymerization, and they developed specifically in endothelial cells as compared with epithelial cells. Expression of the VE-cadherin cytoplasmic domain lacking the beta-catenin binding site also induced Cdc42 activation; thus, its activation cannot be ascribed to beta-catenin binding. However, these cells were not able to form the protrusions. These results suggest that the cytoplasmic domain of non-junctional VE-cadherin can serve as a scaffold involved in Cdc42 activation at the endothelial plasma membrane. beta-Catenin and the associated alpha-catenin may serve as support sites for actin polymerization, leading to formation of long plasma membrane protrusions. Thus, non-junctional VE-cadherin actively participates in inside-out signaling at the plasma membrane, leading to the development of endothelial membrane protrusions.  相似文献   

18.
Kong L  Ge BX 《Cell research》2008,18(7):745-755
Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immune responses to microbial infection. Recent studies have shown that Toll-like receptors (TLRs) play an important role in promoting the clearance of bacteria by up-regulating the phagocytic activity of macrophages. However, information regarding the signaling mechanism of TLR-mediated phagocytosis is still limited. Here, we provide evidence that the stimulation of TLR4 with LPS leads to activation of multiple signaling pathways including MAP kinases, phosphatidylinositide 3-kinase (PI3K), and small GTPases in the murine macrophage-like cell line RAW264.7. Specific inhibition of Cdc42/Rac or p38 MAP kinase, but not PI3K, reduced TLR4-induced phagocytosis of bacteria. Moreover, we have found that either inhibition of actin polymerization by cytochalasin D or the knockdown of actin by RNAi markedly reduced the activation of Cdc42 and Rac by LPS. TLR4-induced activation of Cdc42 and Rac appears to be independent of MyD88. Taken together, our results described a novel actin-Cdc42/Rac pathway through which TLRs can specifically provoke phagocytosis.  相似文献   

19.
Cell adhesion to extracellular matrix is an important physiological stimulus for organization of the actin-based cytoskeleton. Adhesion to the matrix glycoprotein thrombospondin-1 (TSP-1) triggers the sustained formation of F-actin microspikes that contain the actin-bundling protein fascin. These structures are also implicated in cell migration, which may be an important function of TSP-1 in tissue remodelling and wound repair. To further understand the function of fascin microspikes, we examined whether their assembly is regulated by Rho family GTPases. We report that expression of constitutively active mutants of Rac or Cdc42 triggered localization of fascin to lamellipodia, filopodia, and cell edges in fibroblasts or myoblasts. Biochemical assays demonstrated prolonged activation of Rac and Cdc42 in C2C12 cells adherent to TSP-1 and activation of the downstream kinase p21-activated kinase (PAK). Expression of dominant-negative Rac or Cdc42 in C2C12 myoblasts blocked spreading and formation of fascin spikes on TSP-1. Spreading and spike assembly were also blocked by pharmacological inhibition of F-actin turnover. Shear-loading of monospecific anti-fascin immunoglobulins, which block the binding of fascin to actin into cytoplasm, strongly inhibited spreading, actin cytoskeletal organization and migration on TSP-1 and also affected the motility of cells on fibronectin. We conclude that fascin is a critical component downstream of Rac and Cdc42 that is needed for actin cytoskeletal organization and cell migration responses to thrombospondin-1.  相似文献   

20.
Subversion of the eukaryotic cell cytoskeleton is a virulence strategy employed by many bacterial pathogens. Due to the pivotal role of Rho GTPases in actin dynamics they are common targets of bacterial effector proteins and toxins. IpgB1, IpgB2 ( Shigella ), SifA, SifB ( Salmonella ) and Map and EspM (attaching and effacing pathogens) constitute a family of type III secretion system effectors that subverts small GTPase signalling pathways. In this study we identified and characterized EspT from Citrobacter rodentium that triggers formation of lamellipodia on Swiss 3T3 and membrane ruffles on HeLa cells, which are reminiscent of the membrane ruffles induced by IpgB1. Ectopic expression of EspT and IpgB1, but not EspM, resulted in a mitochondrial localization. Using dominant negative constructs we found that EspT-induced actin remodelling is dependent on GTP-bound Rac-1 and Cdc42 but not ELMO or Dock180, which are hijacked by IpgB1 in order to form a Rac-1 specific guanine nucleotide exchange factor. Using pull-down assays with the Rac-1 and Cdc42 binding domains of Pak and WASP we demonstrate that EspT is capable of activating both Rac-1 and Cdc42. These results suggest that EspT modulates the host cell cytoskeleton through coactivation of Rac-1 and Cdc42 by a distinct mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号