首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The Glycine max sucrose binding protein (GmSBP2) promoter directs phloem-specific expression of reporter genes in transgenic tobacco. Here, we identified cis-regulatory domains (CRD) that contribute with positive and negative regulation for the tissue-specific pattern of the GmSPB2 promoter. Negative regulatory elements in the distal CRD-A (-2000 to -700) sequences suppressed expression from the GmSBP2 promoter in tissues other than seed tissues and vascular tissues of vegetative organs. Deletion of this region relieved repression resulting in a constitutive promoter highly active in all tissues analyzed. Further deletions from the strong constitutive -700GmSBP2 promoter delimited several intercalating enhancer-like and repressing domains that function in a context-dependent manner. Histochemical examination revealed that the CRD-C (-445 to -367) harbors both negative and positive elements. This region abolished promoter expression in roots and in all tissues of stems except for the inner phloem. In contrast, it restores root meristem expression when fused to the -132pSBP2-GUS construct, which contains root meristem expression-repressing determinants mapped to the 44-bp CRD-G (-136 to -92). Thus, the GmSBP2 promoter is functionally organized into a proximal region with the combinatorial modular configuration of plant promoters and a distal domain, which restricts gene expression to the vascular tissues in vegetative organs.  相似文献   

4.
Explants of cotton (Gossypium hirsutum L. cv. Jingmian 7) were transformed with Agrobacterium tumefaciens (Smith et Townsend ) Conn LBA4404 harboring an expression cassette composed of CoYMV (Commelina Yellow Mottle Virus) promoter-gus-nos terminator on the plant expression vector pBcopd2. Transgenic plants were regenerated and selected on a medium containing kanamycin. GUS (β-glucuronidase) activity assays and Southern blot analysis confirmed that the chimerical gus gene was integrated into and expressed in the regenerated cotton plants. Plant expression vector pBI121 was also transferred into the same cotton variety and the regenerated transgenic plants were used as a positive control in GUS activity analysis. Evidences from histochemical analysis of GUS activity demonstrated that under the control of a 597 bp CoYMV promoter the gus gene was highly expressed in the vascular tissues of leaves, petioles, stems, roots, hypocotyls, bracteal leaves and most of the flower parts while GUS activity could not be detected in stigma, anther sac and developing cotton fibers of the transgenic cotton plants. GUS specific activity in various organs and tissues from transgenic cotton lines was determined and the results indicated that the CoYMV promoter-gus activities were at the same level or higher than that of CaMV 35S promoter-gus in leaf veins and roots where the vascular tissues occupy a relatively larger part of the organs, but in other organs like leaves, cotyledons and hypocotyls where the vascular tissues occupy a smaller part of the organs the CoYMV promoter-gus activity was only 1/3-1/5 of the CaMV 35S promoter-gus activity. The GUS activity ratio between veins and leaves was averaged 0.5 for 35S-GUS plants and about 2.0 for CoYMV promoter-gus transgenic plants. These results further demonstrated the vascular specific property of the promoter in transgenic cotton plants. An increasing trend of GUS activity in leaf vascular tissues of transgenic cotton plants developing from young to older was observed.  相似文献   

5.
The phenylpropanoid enzyme 4-coumarate:coenzyme A ligase (4CL) plays a key role in linking general phenylpropanoid metabolism to end-product specific biosynthetic pathways. During vascular system and floral organ differentiation, the parsley 4CL-1 gene is expressed in a restricted set of tissues and cell types where 4CL activity is required to supply precursors for the synthesis of diverse phenylpropanoid-derived products such as lignin and flavonoids. In order to localize cis -acting elements which specify complex patterns of 4CL-1 expression, we analyzed the expression of internally deleted promoter fragment— GUS fusions in tobacco plants and parsley protoplasts. Elements located between −244 and −78 were required for most aspects of developmentally regulated expression. Within this region, three separate promoter domains containing partially redundant cis -elements directed vascular-specific expression when combined with a TATA-proximal domain. A negative cis -acting element which represses phloem expression was revealed in one of the domains and appears to be responsible for restricting vascular expression to the xylem. Distinct but overlapping promoter domain combinations were required for expression in floral organs, suggesting that different combinations of cis -acting elements may direct expression in different organs. Gel retardation assays were used to demonstrate the formation of DNA-protein complexes between factors present in nuclear extracts of parsley tissue culture cells and various tobacco organs and a 4CL-1 promoter fragment. Competition experiments showed that complex formation required the presence of a 42 bp promoter domain shown to be critical for 4CL-1 expression in vascular and floral tissues. The results are discussed in light of the coordinate expression of 4CL and other phenylpropanoid genes.  相似文献   

6.
Previous work has shown that the octopine synthase (ocs) gene encoded by the Agrobacterium tumefaciens Ti-plasmid contains an upstream activating sequence necessary for its expression in plant cells. This sequence is composed of an essential 16-bp palindrome and flanking sequences that modulate the level of expression of the ocs promoter in transgenic tobacco calli. In this study, we have used RNA gel blot analysis of RNA extracted from transgenic tobacco plants to show that the octopine synthase gene is not constitutively expressed in all plant tissues and organs. This tissue-specific pattern of expression is determined, to a large extent, by the 16-bp palindrome. Histochemical analysis, using an ocs-lacZ fusion gene, has indicated that the 16-bp palindrome directs the expression of the ocs promoter in specific cell types in the leaves, stems, and roots of transgenic tobacco plants. This expression is especially strong in the vascular tissue of the leaves, leaf mesophyll cells, leaf and stem guard cells, and the meristematic regions of the shoots and roots. Sequences surrounding the palindrome in the upstream activating sequence restrict the expression of the ocs promoter to fewer cell types, resulting in a reduced level of expression of beta-galactosidase activity in the central vascular tissue of leaves, certain types of leaf trichomes, and the leaf primordia.  相似文献   

7.
8.
9.
Cell-specific expression patterns of the Eucalyptus gunnii cinnamoyl coenzymeA reductase (EgCCR) and cinnamyl alcohol dehydrogenase (EgCAD2) promoters were analyzed by promoter-GUS histochemistry in the primary and secondary xylem tissues from floral stems and roots of Arabidopsis thaliana. Expression patterns indicated that the EgCCR and EgCAD2 genes were expressed in a coordinated manner in primary and secondary xylem tissues of the Arabidopsis floral stem and root. Both genes were expressed in all lignifying cells (vessel elements, xylem fibers and paratracheal parenchyma cells) of xylem tissues. The capacity for long-term monolignol production appeared to be related to the cell-specific developmental processes and biological roles of different cell types. Our results suggested that lignification of short-lived vessel elements was achieved by a two-step process involving (i) monolignol production by vessel elements prior to vessel programmed cell death and (ii) subsequent monolignol production by vessel-associated living paratracheal parenchyma cells following vessel element cell death. EgCCR and EgCAD2 gene expression patterns suggested that the process of xylem cell lignification was similar in both primary and secondary xylem tissues in Arabidopsis floral stems and roots.  相似文献   

10.
11.
Farnesylation mediates membrane targeting and in vivo activities of several key regulatory proteins such as Ras and Ras-related GTPases and protein kinases in yeast and mammals, and is implicated in cell cycle control and abscisic acid (ABA) signaling in plants. In this study, the developmental expression of a pea protein farnesyl-transferase (FTase) gene was examined using transgenic expression of the β-glucuronidase (GUS) gene fused to a 3.2 kb 5′ upstream sequence of the gene encoding the pea FTase β subunit. Coordinate expression of the GUS transgene and endogenous tobacco FTase β subunit gene in tobacco cell lines suggests that the 3.2 kb region contains the key FTase promoter elements. In transgenic tobacco plants, GUS expression is most prominent in meristematic tissues such as root tips, lateral root primordia and the shoot apex, supporting a role for FTase in the control of the cell cycle in plants. GUS activity was also detected in mature embryos and imbibed embryos, in accordance with a role for FTase in ABA signaling that modulates seed dormancy and germination. In addition, GUS activity was detected in regions that border two organs, e.g. junctions between stems and leaf petioles, cotyledons and hypocotyls, roots and hypocotyls, and primary and secondary roots. GUS is expressed in phloem complexes that are adjacent to actively growing tissues such as young leaves, roots of light-grown seedlings, and hypocotyls of dark-grown seedlings. Both light and sugar (e.g. sucrose) treatments repressed GUS expression in dark-grown seedlings. These expression patterns suggest a potential involvement of FTase in the regulation of nutrient allocation into actively growing tissues.  相似文献   

12.
T Nishiuchi  T Hamada  H Kodama    K Iba 《The Plant cell》1997,9(10):1701-1712
The Arabidopsis FAD7 gene encodes a plastid omega-3 fatty acid desaturase that catalyzes the desaturation of dienoic fatty acids in membrane lipids. The mRNA levels of the Arabidopsis FAD7 gene in rosette leaves rose rapidly after local wounding treatments. Wounding also induced the expression of the FAD7 gene in roots. To study wound-responsive expression of the FAD7 gene in further detail, we analyzed transgenic tobacco plants carrying the -825 Arabidopsis FAD7 promoter-beta-glucuronidase fusion gene. In unwounded transformants, FAD7 promoter activity was restricted to the tissues whose cells contained chloroplasts. Activation of the FAD7 promoter by local wounding treatments was more substantial in stems (29-fold) and roots (10-fold) of transgenic plants than it was in leaves (approximately two-fold). Significant induction by wounding was observed in the overall tissues of stems and included trichomes, the epidermis, cortex, vascular system, and the pith of the parenchyma. Strong promoter activity was found preferentially in the vascular tissues of wounded roots. These results indicate that wounding changes the spatial expression pattern of the FAD7 gene. Inhibitors of the octadecanoid pathway, salicylic acid and n-propyl gallate, strongly suppressed the wound activation of the FAD7 promoter in roots but not in leaves or stems. In unwounded plants, exogenously applied methyl jasmonate activated the FAD7 promoter in roots, whereas it repressed FAD7 promoter activity in leaves. Taken together, wound-responsive expression of the FAD7 gene in roots is thought to be mediated via the octadecanoid pathway, whereas in leaves, jasmonate-independent wound signals may induce the activation of the FAD7 gene. These observations indicate that wound-responsive expression of the FAD7 gene in aerial and subterranean parts of plants is brought about by way of different signal transduction pathways.  相似文献   

13.
14.
15.
Twelve independent lines were transformed by particle bombardment of soybean embryogenic suspension cultures with the tobacco anthranilate synthase (ASA2) promoter driving the uidA (beta-glucuronidase, GUS) reporter gene. ASA2 appears to be expressed in a tissue culture specific manner in tobacco (Song H-S, Brotherton JE, Gonzales RA, Widholm JM. Tissue culture specific expression of a naturally occurring tobacco feedback-insensitive anthranilate synthase. Plant Physiol 1998;117:533-43). The transgenic lines also contained the hygromycin phosphotransferase (hpt) gene and were selected using hygromycin. All the selected cultures or the embryos that were induced from these cultures expressed GUS measured histochemically. However, no histochemical GUS expression could be found in leaves, stems, roots, pods and root nodules of the plants formed from the embryos and their progeny. Pollen from some of the plants and immature and mature seeds and embryogenic cultures initiated from immature cotyledons did show GUS activity. Quantitative 4-methylumbelliferyl-glucuronide (MUG) assays of the GUS activity in various tissues showed that all with observable histochemical GUS activity contained easily measurable activities and leaves and stems that showed no observable histochemical GUS staining did contain very low but measurable MUG activity above that of the untransformed control but orders of magnitude lower than the constitutive 35S-uidA controls used. Low but clearly above background levels of boiling sensitive GUS activity could be observed in the untransformed control immature seeds and embryogenic cultures using the MUG assay. Thus in soybean the ASA2 promoter drives readily observable GUS expression in tissue cultures, pollen and seeds, with only extremely low levels seen in vegetative tissues of the plants. The ASA2 driven expression seen in mature seed was, however, much lower than that seen with the constitutive 35S promoter; less than 2% in seed coats and less than 0.13% in cotyledons and embryo axes. The predominate tissue culture specific expression pattern of the ASA2 promoter may be useful for genetic transformation of crops.  相似文献   

16.
In eukaryotes, manganese superoxide dismutase is a nuclear-encoded protein that scavenges superoxide radicals in the mitochondrial matrix. We have isolated two manganese superoxide dismutase genes from Nicotiana plumbaginifolia L. and fused the 5' upstream regulatory region of these genes to the beta-glucuronidase reporter gene. The two gene fusions displayed a differential tissue specificity in transgenic tobacco (Nicotiana tabacum). Promoter activity of the SodA1 gene fusion was found in the pollen, middle layer, and stomium of anthers, but was usually undetectable in vegetative organs of mature plants. The SodA2 gene fusion was expressed in the leaves, stems, roots, and flowers. SodA2 promoter activity was most prominent in the vascular bundles, stomata, axillary buds, pericycle, stomium, and pollen. Histochemical analysis of succinate dehydrogenase activity suggested that the spatial expression of the two gene fusions is generally correlated with mitochondrial respiratory activity.  相似文献   

17.
18.
We characterized promoter activity of a phenylpropanoid biosynthetic gene encoding 4-coumarate Co-A ligase (4CL), Pta4Clα, from Pinus taeda. Histochemical- and quantitative assays of GUS expression in the vascular tissue were performed using transgenic tobacco plants expressing promoter-GUS reporters. Deletion analysis of the Pta4Clα promoter showed that the region ?524 to ?252, which has two AC elements, controls the high expression levels in ray-parenchyma cells of older tobacco stems. High activity level of the promoter domain of Pta4CLα was also detected in the xylem cells under bending stress. DNA-protein complexes were detected in the reactions of the Pta4CLα promoter fragments with the nuclear proteins of xylem of P. taeda. The AC elements in the Pta4CLα promoter appeared to have individual roles during xylem development that are activated in a coordinated manner in response to stress in transgenic tobacco.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号