首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Planarian head extract was fractionated and the fractions were assayed for their effect on cultured cells and planarian regeneration. One fraction (molecular weight larger than 10 000; unadsorbable by DEAE-Sephadex, CM-Sephadex and Con A-Sepharose; and precipitable by ammonium sulfate) inhibited the growth of both Neuro 2a and PC-12 cell lines as well as planarian head- regeneration. This effect was specific for head-regeneration (regeneration of tails was not influenced), trypsin sensitive, reversible and stable after heat-treatment at 80° C for 30 min.  相似文献   

3.
The lymphoid cell line #1670 has been derived from the infiltrated spleen of a tumor-bearing marmoset monkey infected with Herpesvirus saimiri. The cells contain both types of H. saimiri DNA, unique light (L-) DNA (36% cytosine plus guanine) and repetitive heavy (H-) DNA (71% cytosine plus guanine), without producing infectious virus. Viral DNA was found to persist in these cells as nonintegrated circular DNA molecules. Closed circular superhelical viral DNA molecules were isolated by three subsequent centrifugation steps: (i) isopycnic centrifugation in CsCl, (ii) sedimentation through glycerol gradients, and (iii) equilibrium centrifugation in CsCl-ethidium bromide. The isolated circles had a molecular weight of 131.5 +/- 3.6 x 10(6). This is significantly higher than the molecular weight of linear DNA molecules isolated from purified H. saimiri virions (about 100 x 10(6)). Partial denaturation mapping of circular molecules from #1670 lymphoid cells showed uniform arrangement of H- and L-DNA sequences in all circles. All denatured molecules contained two L-DNA regions (molecular weights of 54.0 +/- 1.8 x 10(6) and 31.5 +/- 1.3 x 10(6)) and two H-DNA regions (molecular weight of 25.6 +/- 1.9 x 10(6) and 20.0 +/- 0.8 x 10(6)) of constant length. Maps of both L-regions suggested that the sequences of the shorter L-DNA region were a subset of those of the longer region. The sequences of both L-regions had the same orientation. Circular molecules from H. saimiri-transformed lymphoid cell line #1670 appeared to represent defective genomes, containing only 75% of the genetic information present in L-DNA of H. saimiri virions.  相似文献   

4.
Moloney murine leukemia virus 35S RNA (molecular weight 3 to 3.4 × 106) is cleaved by nuclease activity present in microsomal fractions from MLV infected or uninfected mouse embryo cells to two RNA species of approximate molecular weights 1.8 × 106 and 1.5 × 106. Microsomal fractions from MLV infected and uninfected cells also contained nucleolytic activity that solubilized [3H]poly(A)·poly(U) but not [3H]poly(C) or [3H]poly(U); the cleavage of poly(A)·poly(U) was inhibited by ethidium bromide. The cleavage of MLV RNA was also inhibited by ethidium bromide, suggesting double stranded regions in 35S RNA as the site of cleavage.  相似文献   

5.
6.
7.
1. The rRNA species of the Cephalopoda Octopus vulgaris and Loligo vulgaris were found to have unexpectedly high sedimentation coefficients and molecular weights. In 0.1 M-NaCl the L-rRNA (RNA from large ribosomal subunit) has the same s20 value as the L-rRNA of the mammals (30.7S), whereas the S-rRNA (RNA from small ribosomal subunit) sediments at a faster rate (20.1S) than the S-rRNA of both the mammals and the fungi (Neurospora crassa) (17.5S). The molecular weights of the L-rRNA were determined by gel electrophoresis in formamide and found to be 1.66 X 10(6) (Octupus) and 1.89 X 10(6) (Loligo); the mol.wt. of the S-rRNA of both species is 0.96 X 10(6), i.e. much larger than that of the mammals (0.65 X 10(6)) and almost coincident with that of the '23S' RNA of the prokaryotes. 2. By contrast, the less evolved Gastropoda and Lamellibranchiata (Murex trunculus and Macrocallista chione) have S-rRNA and L-rRNA species with mol.wts. of 0.65 X 10(6) and approx. 1.40 X 10(6).3. All the mature L-rRNA molecules of the cephalopoda are composed of two unequal fragments held together by regions of hydrogen-bonding having a similar, low, thermal stability in the two species; the molecular weights of the two fragments composing the L-rRNA are estimated to be 0.96 X 10(6) and 0.88 X 10(6) (Loligo) and 0.96 X 10(6) and 0.65 X 10(6) (Octupus). THe S-rRNA of both species is a continuous chain with exactly the same molecular weight (0.96 X 10(6)) as the heavier of the two fragments of the L-rRNA. 4. The secondary-structure features of the L-rRNA and S-rRNA species of the Caphalopoda were investigated by thermal 'melting' analysis in 4.0 M-guanidinium chloride; 60-70% of the residues are estimated to form short, independently 'melting' bihelical segments not more than 10 base-pairs in length. 5. Bases are unevenly distributed between non-helical and bihelical portions of the rRNA molecules, G and C residues being preferentially concentrated in bihelical comains. 6. The secondary-structure regions of the L-rRNA species of Octopus and Loligo are heterogenous, including two discrete fractions of independently 'melting' species that give rise to biphasic 'melting' profiles: a fraction consisting of shorter (G + C)-poorer segments (60-68% G + C, not more than 5 base-pairs in length) and a fraction consisting of longer (G + C)-richer segments (80-88% G + C, 5-10 base-pairs in length). No evidence for heterogeneity has been detected in the S-rRNa.  相似文献   

8.
The growth rate of normal cells multiplied in vitro decreases as the cell density of the culture increases. Previous results suggested that this density-dependent inhibition of growth in nontransformed cells was due to the diffusion of growth inhibitory substances in the medium of dense cultures. In this paper, we demonstrate that dense cultures of 3T3 cells secrete inhibitory and stimulatory factors. Macromolecules of conditioned medium were fractionated on Biogel P150 and the different fractions were tested on quiescent cultures of 3T3 cells stimulated or not to proliferate by addition of alpha globulin. When target cells were not stimulated to proliferate by addition of exocrine growth factors, we observed the inhibitory activity of a large molecular weight inhibitor (IDF45) and the stimulatory activity of autocrine growth factors (fraction about 35 and 10 K molecular weight), on the incorporation of 14C inosine into nucleotide pool and RNA. However, DNA synthesis was significantly stimulated with fraction 10 K only. This discrepancy between the stimulation of RNA and DNA synthesis may be explained by the presence, simultaneously, of inhibitory and stimulatory factors in fraction 35 and 10 K molecular weight. The presence of inhibitory factor was demonstrated when the fractions were tested on target cells stimulated to proliferate by alpha globulin addition and labeled with 14C thymidine. In these conditions, the stimulatory activity of autocrine growth factors was not observable, and only the inhibitory activity on DNA synthesis of fractions 35 and 10 K appeared. It is tempting to assume that the regulation of in vitro cell proliferation is determined by the balance between these antagonist stimulatory and inhibitory autocrine growth factors.  相似文献   

9.
Sedimentation analysis and intensity fluctuation spectroscopy have been used in conjunction with the Svedberg equation to determine the particle molecular weights of Rous sarcoma virus (Prague strain) and avian myeloblastosis virus (BAI strain). The molecular weights of these two viruses are (294 +/- 20) x 10(6) and (256 +/- 18) x 10(6), respectively. Values for the molecular weight of the RNA contained in each particle have been calculated as (5.58 +/- 0.5) x 10(6) and (5.88 +/- 0.5) x 10(6). Since the proportion of the viral RNA represented by 4 to 7S low-molecular-weight material is known, the molecular weight of the 60 to 70S genomes may be calculated to lie in the range (3.8 +/- 0.3 to 4.8 +/- 0.4) x 10(6) for both particles. These estimates for the molecular weight of the 60 to 70S genome are much lower than previous estimates and fall within the range of current estimates of the size of a single 35S subunit. The implications of this finding are discussed in terms of current theories for the structure of the genome of RNA tumor viruses.  相似文献   

10.
A method for electrophoretic analysis of RNA under fully denaturing conditions on exponential gradient polyacrylamide gels is described. Full denaturation, and strand separation of DNA - RNA hybrids and double-stranded RNA is obtained in dry formamide only if electrophoresis is carried out at 45 degrees and 55 degrees C, respectively. In such conditions, the effects of secondary structure of RNA, important in aqueous medium, are suppressed and a linear correlation is obtained between the logarithm of the molecular weight of an RNA and its final position in the gel over the entire molecular weight range of 10(4) - 10(7). Based on absolute molecular weight standards, obtained from sequenced rRNA of Escherichia coli and tRNA and extrapolating to higher molecular weights the size of animal cell was reexamined. Precursor tRNA from HeLa cells migrates according to a molecular weight of 4.1 x 10(6). Nascent precursor mRNA has molecular weights of up to 5 x 10(6) in the case of duck erythroblasts and of up to 10(7) in HeLa cells. This seems to represent the largest size of non-viral animal-cell RNA molecules.  相似文献   

11.
The incorporation of [3H]UTP into RNA by isolated polytene salivary gland nuclei of Chironomus thummi was investigated under different incubation conditions; the labeled RNA fractions were characterized by electrophoresis. The results suggested that at two characteristic ionic conditions most of the RNA synthesized was the product of RNA polymerase I or RNA polymerase II as distinguished by their differential sensitivities to α-amanitin. Electrophoretical analysis of the RNA synthesized under conditions favouring polymerase I showed that this RNA population consisted mainly of four distinct molecular weight fractions within a range between 2.8 × 104 and 2.5 × 106. Under conditions favouring polymerase II two fractions were detected: one with a broad molecular weight distribution around 0.4 × 106 containing considerable amounts of poly(A)-bearing RNA molecules, and a second with a peak at a molecular weight of 2.8 × 104.  相似文献   

12.
The therapeutic potential of adult stem cells may become a relevant option in clinical care in the future. In hand and plastic surgery, cell therapy might be used to enhance nerve regeneration and help surgeons and clinicians to repair debilitating nerve injuries. Adipose-derived stem cells (ASCs) are found in abundant quantities and can be harvested with a low morbidity. In order to define the optimal fat harvest location and detect any potential differences in ASC proliferation properties, we compared biopsies from different anatomical sites (inguinal, flank, pericardiac, omentum, neck) in Sprague–Dawley rats. ASCs were expanded from each biopsy and a proliferation assay using different mitogenic factors, basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) was performed. Our results show that when compared with the pericardiac region, cells isolated from the inguinal, flank, omental and neck regions grow significantly better in growth medium alone. bFGF significantly enhanced the growth rate of ASCs isolated from all regions except the omentum. PDGF had minimal effect on ASC proliferation rate but increases the growth of ASCs from the neck region. Analysis of all the data suggests that ASCs from the neck region may be the ideal stem cell sources for tissue engineering approaches for the regeneration of nervous tissue.  相似文献   

13.
Discrete RNA fractions sedimenting slightly slower than 18s ribosomal RNA have been found in mitochondrial preparations from both hamster (BHK-21) and mouse (L-929) cells. This RNA could be separated into two components, present in approximately equimolar amounts, by prolonged zonal centrifugation or acrylamide gel electrophoresis. The hamster components had sedimentation constants averaging 16.8 and 13.4, and molecular weights (estimated by gel electrophoresis) averaging 0.74 and 0.42 x 106 daltons. Mixed labeling experiments showed that the mouse components sedimented and electrophoresed 3–6% more slowly than the corresponding hamster components. The RNA from both cell lines resembled mitochondrial ribosomal RNA from yeast and Neurospora in being GC poor, and in addition the larger and smaller components resembled each other in base composition. These results, taken with those of other recent studies, are compatible with the idea that our high molecular weight mitochondrial RNA is ribosomal; such RNA would then constitute a uniquely small size-class of ribosomal RNA.  相似文献   

14.
Polyadenylated RNA from Acetabularia   总被引:1,自引:0,他引:1  
Polyadenylated RNA was isolated from whole cells and from anucleate cytoplasm of Acetabularia mediterranea. It is synthesised in nucleate but not in anucleate cells. This RNA has a high molecular weight ranging from 0.5 to 3.0 × 106 daltons. In contrast to the RNA of 80 S ribosomes the synthesis of polyadenylated RNA is only slightly enhanced in nucleated cell fragments during the initial phase of regeneration. Newly synthesised polyadenylated RNA migrates from the nucleus through the stalk at about 5 mm a day. The data suggest that polyadenylated RNA migrates independently of 80 S ribosomes.  相似文献   

15.
16.
The protein kinase DAI, the double-stranded RNA activated inhibitor of translation (also known as PKR), regulates cell growth, virus infection, and other processes. DAI represents a class of proteins containing a recently recognized RNA binding motif, the dsRBM, but little is known about the contacts between these proteins and their RNA ligands. In adenovirus-infected cells, DAI activation is prevented by VA RNAI, a highly structured RNA that binds to the kinase. VA RNA contains three chief structural features: a terminal stem, an apical stem-loop, and a complex central domain. We used enzymatic and chemical footprinting to identify the interactions between DAI and VA RNAI. DAI protects the proximal part of the apical stem structure, an adjacent region in the central domain, and a region surrounding a conserved stem in the central domain from nuclease attack. During binding the RNA undergoes a conformational change that is mainly restricted to the central domain. A similar change is induced by magnesium ions alone. Footprinting and interference binding assays using base-specific chemical probes suggest that the protein does not make major contacts with RNA bases. On the other hand, footprinting with probes specific for the RNA backbone shows that DAI engages in a strong interaction with the minor groove of the apical stem and a weaker interaction in the central domain. A truncated form of DAI, p20, containing only the RNA binding domain, gives a similar protection pattern in the apical stem but protects the central domain less effectively. We conclude that the RNA binding domain of DAI interacts directly with the apical stem and central domain of VA RNA, and that other regions of the protein contribute to interactions with the central domain.  相似文献   

17.
C. M. Bray  J. Dasgupta 《Planta》1976,132(2):103-108
Summary RNA synthesis and protein synthesis in embryonic axis tissue of viable pea (Pisum arvense L. var. N.Z. maple) seed commences during the first hour of germination. Protein synthesis in axis tissue of non-viable pea seed is barely detectable during the first 24 h after the start of imbibition. Nonviable axis tissue incorporates significant levels of [3H]uridine into RNA during this period but the level of incorporation does not increase significantly over the first 24 h of imbibition. In axis tissue of non-viable seed during the first hour of imbibition most of the [3H]uridine was incorporated into low molecular weight material migrating in advance of the 4S and 5S RNA species in polyacrylamide gels but some radioactivity was incorporated into a discrete species of RNA having a molecular weight of 2.7×106. After 24 h, non-viable axis tissue incorporates [3H]uridine into ribosomal RNA, the low molecular weight material migrating in advance of the 4S and 5S RNA peak in polyacrylamide gels and a heterogeneous RNA species of molecular weight ranging from 2.2×106 to 2.7×106. No 4S or 5S RNA synthesis is detectable after 24 h of imbibition in non-viable axis tissue. Axis tissue of viable pea seed synthesises rRNA, 4S and 5S RNA, the low molecular weight material migrating in advance of the 4S and 5S RNA peak in polyacrylamide gels and the rRNA precursor species at both periods of germination studied. Loss of viability in pea seed appears to be accompanied by the appearance of lesions in the processing of rRNA precursor species and a significant loss of RNA synthesising activity.Abbreviations rRNA ribosomal RNA - TCA trichloroacetic acid - SLS sodium lauryl sulphate - PPO 2,5 Diphenyloxazole - POPOP 1,4-Bis-2-(4-methyl-5-penyloxazolyl)-benzene  相似文献   

18.
When auxin stimulates rapid cell elongation growth of cereal coleoptiles, it causes a degradation of 1,3:1,4-beta-glucan in hemicellulosic polysaccharides. We examined gene expressions of endo-1,3:1,4-beta-glucanase (EI) and exo-beta-glucanase (ExoII), of which optimum pH are about 5, and molecular distribution of hemicellulosic polysaccharides in barley (Hordeum vulgare L.) coleoptile segments treated with or without IAA. IAA (10(-5) M) stimulated the gene expression of EI, while it did not affect that of ExoII. IAA induced gene expression of EI after 4 h and increased wall-bound glucanase activity after 8 h. The molecular weight distribution of hemicellulosic polysaccharides from coleoptile cell walls was shifted to lower molecular weight region by 2 h of IAA treatment. Fusicoccin (10(-6) M) mimicked IAA-induced elongation growth and the decrease in molecular weight of hemicellulosic 1,3:1,4-beta-glucan of coleoptiles in the first 4 h, but it did not promote elongation growth thereafter. These facts suggest that acidification of barley cell walls by IAA action enhances pre-existing cell wall-bound glucanase activity in the early first phase of IAA-induced growth and the late second phase involves the gene expression of EI by IAA.  相似文献   

19.
20.
The double-stranded RNA activated protein kinase DAI contains an RNA binding domain consisting of two copies of a double-stranded RNA binding motif. We have investigated the role of RNA structure in the interaction between DAI and the structured single-stranded RNA, adenovirus VA RNAI, which inhibits DAI activation. Mutations in the apical stem, terminal stem, and central domain of the RNA were tested to assess the contribution of these elements to DAI binding in vitro. The data demonstrate that over half a turn of intact apical stem is required for the interaction and that there is a correlation between the binding of apical stem mutants and their ability to function both in vivo and in vitro. There was also evidence of preference for GC-rich sequence in the proximal region of the apical stem. In the central domain the correlation between binding and function of mutant RNAs was poor, suggesting that at least some of this region plays no direct role in binding to DAI, despite its functional importance. Exceptionally, central domain mutations that encroached on the phylogenetically conserved stem 4 of VA RNA disrupted binding, and complementary mutations in this sequence partially restored binding. Measurement of the binding of wild-type VA RNAI to DAI and p20, a truncated form of the protein containing the RNA binding domains alone, under various ionic conditions imply that the major interactions are electrostatic and occur via the protein's RNA binding domain. However, differences between full-length DAI and p20 in their binding to mutants in the conserved stem suggest that regions outside the RNA binding domain also participate in the binding. The additional interactions are likely to be non-ionic, and may be important for preventing DAI activation during virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号