首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoglycerate kinase (PGK) from the hyperthermophilic bacterium Thermotoga maritima has been purified to homogeneity. A second larger enzyme with PGK activity and identical N-terminal sequence was also found. Surprisingly, this enzyme displayed triosephosphate isomerase (TIM) activity. No other TIM is detectable in T. maritima crude extracts. As shown by ultracentrifugal analysis, PGK is a 43 kDa monomer, whereas the bifunctional PGK-TIM fusion protein is a homotetramer of 240-285 kDa. SDS-PAGE indicated a subunit size of 70 kDa for the fusion protein. Both enzymes show high thermostability. Measurements of the catalytic properties revealed no extraordinary results. pH optima, Km values and activation energies were found to be in the range observed for other PGKs and TIMs investigated so far. The corresponding pgk and tpi genes are part of the apparent gap operon of T. maritima. This gene segment contains two overlapping reading frames, where the 43 kDa PGK is encoded by the upstream open reading frame, the pgk gene. On the other hand, the 70 kDa PGK-TIM fusion protein is encoded jointly by the pgk gene and the overlapping downstream open reading frame of the tpi gene. A programmed frameshift may be responsible for this fusion. A comparison of the amino acid sequence of both the PGK and the TIM parts of the fusion protein with those of known PGKs and TIMs reveals high similarity to the corresponding enzymes from different procaryotic and eucaryotic organisms.  相似文献   

2.
L(+)-lactate dehydrogenase (LDH; E.C.1.1.1.27) from the hyperthermophilic bacterium Thermotoga maritima has been shown to represent the most stable LDH isolated so far (Wrba A, Jaenicke R, Huber R, Stetter KO, 1990, Eur J Biochem 188:195-201). In order to obtain the enzyme in amounts sufficient for physical characterization, and to analyze the molecular basis of its intrinsic stability, the gene was cloned and expressed functionally in Escherichia coli. Growth of the cells and purification of the enzyme were performed aerobically at 26 degrees C, i.e., ca. 60 degrees below the optimal growth temperature of Thermotoga. Two enzyme species with LDH activity were purified to homogeneity. Crystals of the enzyme obtained at 4 degrees C show satisfactory diffraction suitable for X-ray analysis up to a resolution of 2.8 A. As shown by gel-permeation chromatography, chemical crosslinking, light scattering, analytical ultracentrifugation, and electron microscopy, the two LDH species represent homotetramers and homooctamers (i.e., dimers of tetramers), with a common subunit molecular mass of 35 kDa. The spectroscopic characteristics (UV absorption, fluorescence emission, near- and far-UV CD) of the two species are indistinguishable. The calculated alpha-helix content is 45%, in accordance with the result of homology modeling. Compared to the tetrameric enzyme, the octamer exhibits reduced specific activity, whereas KM is unalatered. The extreme intrinsic stability of the protein is reflected by its unaltered catalytic activity over 4 h at 85 degrees C; irreversible thermal denaturation becomes significant at approximately 95 degrees C. The anomalous resistance toward chemical denaturation using guanidinium chloride and urea confirms this observation. Both the high optimal temperature and the pH optimum of the catalytic activity correspond to the growth conditions of T. maritima in its natural habitat.  相似文献   

3.
The molecular mechanisms that evolution has been employing to adapt to environmental temperatures are poorly understood. To gain some further insight into this subject we solved the crystal structure of triosephosphate isomerase (TIM) from the hyperthermophilic bacterium Thermotoga maritima (TmTIM). The enzyme is a tetramer, assembled as a dimer of dimers, suggesting that the tetrameric wild-type phosphoglycerate kinase PGK-TIM fusion protein consists of a core of two TIM dimers covalently linked to 4 PGK units. The crystal structure of TmTIM represents the most thermostable TIM presently known in its 3D-structure. It adds to a series of nine known TIM structures from a wide variety of organisms, spanning the range from psychrophiles to hyperthermophiles. Several properties believed to be involved in the adaptation to different temperatures were calculated and compared for all ten structures. No sequence preferences, correlated with thermal stability, were apparent from the amino acid composition or from the analysis of the loops and secondary structure elements of the ten TIMs. A common feature for both psychrophilic and T. maritima TIM is the large number of salt bridges compared with the number found in mesophilic TIMs. In the two thermophilic TIMs, the highest amount of accessible hydrophobic surface is buried during the folding and assembly process.  相似文献   

4.
The molecular basis of thermal stability of globular proteins is a highly significant yet unsolved problem. The most promising approach to its solution is the investigation of the structure-function relationship of homologous enzymes from mesophilic and thermophilic sources. In this context, D-glyceraldehyde-3-phosphate dehydrogenase has been the most extensively studied model system. In the present study, the most thermostable homolog isolated so far is described with special emphasis on the stability of the enzyme under varying solvent conditions. D-Glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima is an intrinsically thermostable enzyme with a thermal transition temperature around 110 degrees C. The amino acid sequence, electrophoresis, and sedimentation analysis prove the enzyme to be a homotetramer with a gross structure similar to its mesophilic counterparts. The enzyme in the absence and in the presence of its coenzyme, NAD+, exhibits no drastic structural differences except for a 3% change in sedimentation velocity reflecting slight alterations in the quaternary structure of the enzyme. At low temperature, in the absence of denaturants, neither "cold denaturation" nor subunit dissociation are detectable. Guanidinium chloride and pH-dependent deactivation precede the decrease in fluorescence emission and ellipticity, suggesting a complex denaturation mechanism. An up to 3-fold activation of the enzyme at low guanidinium concentration may be interpreted in terms of a compensation of the tight packing of the thermophilic enzyme at low temperature. Under destabilizing conditions, e.g. moderate concentrations of chaotropic agents, low temperature favors denaturation. The effect becomes important in reconstitution experiments after preceding guanidinium denaturation; the reactivation yield at low temperature drops to zero, whereas between 35 and 80 degrees C reactivation exceeds 80%. Shifting the temperature from approximately 0 degrees C to greater than or equal to 30 degrees C releases a trapped tetrameric intermediate in a fast reaction. Concentration-dependent reactivation experiments prove renaturation of the enzyme to involve consecutive folding and association steps. Reconstitution at room temperature yields the native protein, in spite of the fact that the temperature of the processes in vitro and in vivo differ by more than 60 degrees C.  相似文献   

5.
The hyperthermophilic bacterium Thermotoga maritima is capable of gaining metabolic energy utilizing xylan. XynA, one of the corresponding hydrolases required for its degradation, is a 120-kDa endo-1,4-D-xylanase exhibiting high intrinsic stability and a temperature optimum approximately 90 degrees C. Sequence alignments with other xylanases suggest the enzyme to consist of five domains. The C-terminal part of XynA was previously shown to be responsible for cellulose binding (Winterhalter C, Heinrich P, Candussio A, Wich G, Liebl W. 1995. Identification of a novel cellulose-binding domain within the multi-domain 120 kDa Xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 15:431-444). In order to characterize the domain organization and the stability of XynA and its C-terminal cellulose-binding domain (CBD), the two separate proteins were expressed in Escherichia coli. CBD, because of its instability in its ligand-free form, was expressed as a glutathione S-transferase fusion protein with a specific thrombin cleavage site as linker. XynA and CBD were compared regarding their hydrodynamic and spectral properties. As taken from analytical ultracentrifugation and gel permeation chromatography, both are monomers with 116 and 22 kDa molecular masses, respectively. In the presence of glucose as a ligand, CBD shows high intrinsic stability. Denaturation/renaturation experiments with isolated CBD yield > 80% renaturation, indicating that the domain folds independently. Making use of fluorescence emission and far-UV circular dichroism in order to characterize protein stability, guanidine-induced unfolding of XynA leads to biphasic transitions, with half-concentrations c1/2 (GdmCl) approximately 4 M and > 5 M, in accordance with the extreme thermal stability. At acid pH, XynA exhibits increased stability, indicated by a shift of the second guanidine-transition from 5 to 7 M GdmCl. This can be tentatively attributed to the cellulose-binding domain. Differences in the transition profiles monitored by fluorescence emission and dichroic absorption indicate multi-state behavior of XynA. In the case of CBD, a temperature-induced increase in negative ellipticity at 217 nm is caused by alterations in the environment of aromatic residues that contribute to the far-UV CD in the native state.  相似文献   

6.
The metabolism of hyperthermophilic microorganisms can function properly at temperatures close to 100 degrees C. It follows that they are equipped with both thermostable enzymes and mechanisms that handle labile metabolites. We wanted to understand how stable and active phosphoribosyl anthranilate isomerase (tPRAI) from the hyperthermophile Thermotoga maritima is at its optimum growth temperature of 80 degrees C, and how its thermolabile substrate, N-(5'-phosphoribosyl)-anthranilate (PRA), is protected from rapid decomposition. To this end, the trpF gene of T. maritima was expressed heterologously in Escherichia coli and tPRAI was purified. In contrast to most PRAIs from mesophiles, which are monomers with the eightfold beta alpha (or TIM) barrel fold, tPRAI is a homodimer. It is strongly resistant toward inactivation by temperatures up to 95 degrees C, by acidification to pH 3.2, and by proteases in the presence and absence of detergents. tPRAI is about 35-fold more active at its physiologic temperature than is the enzyme from E. coli (ePRAI) at 37 degrees C. This high catalytic efficiency of tPRAI is likely to complete successfully with the rapid spontaneous hydrolysis of PRA at 80 degrees C. Thus, with respect to both stability and function, tPRAI appears well adapted to the extreme habitat of T. maritima. Single crystals of tPRAI have been obtained that are suitable for X-ray analysis at high resolution.  相似文献   

7.
G Voordouw  C Milo  R S Roche 《Biochemistry》1976,15(17):3716-3724
The total kinetic thermal stability of a protein molecule, expressed as the total free energy of activation in thermal denaturation reactions, can be separated into an intrinsic contribution of the polypeptide chain and a contribution due to the binding of calcium ions. The theory for this procedure is applied to thermal denaturation data, obtained at the pH of optimum stability, for the serine proteases, thermomycolase and subtilisin types Carlsberg and BPN', and for the zinc metalloendopeptidases, thermolysin and neutral protease A. The results, obtained from Arrhenius plots at high and low free calcium ion concentrations, reveal a considerable variation in the calcium ion contribution to the total kinetic thermal stability of the various enzymes. In the serine protease group, at 70 degrees C, the stability is largest for thermomycolase, mainly due to a relatively high intrinsic contribution. For the metalloendopeptidases the total kinetic thermal stability is largest for thermolysin, the difference between thermolysin and neutral protease A being dominated by bound calcium ion contributions. The intrinsic kinetic thermal stability of the polypeptide chain of thermolysin is considerably smaller than that of any of the serine proteases and is probably of the same order of magnitude as that of neutral protease A. Thus, the well known total kinetic thermal stability of thermolysin is due mainly to a single calcium ion (Voordouw, G., and Roche, R. S. (1975), Biochemistry 14, 4667) that binds with high affinity even at very high temperatures (K congruent to 6 X 10(7) M-1 at 80 degrees C).  相似文献   

8.
Adapting metabolic enzymes of microorganisms to low temperature environments may require a difficult compromise between velocity and affinity. We have investigated catalytic efficiency in a key metabolic enzyme (dihydrofolate reductase) of Moritella profunda sp. nov., a strictly psychrophilic bacterium with a maximal growth rate at 2 degrees C or less. The enzyme is monomeric (Mr=18,291), 55% identical to its Escherichia coli counterpart, and displays Tm and denaturation enthalpy changes much lower than E. coli and Thermotoga maritima homologues. Its stability curve indicates a maximum stability above the temperature range of the organism, and predicts cold denaturation below 0 degrees C. At mesophilic temperatures the apparent Km value for dihydrofolate is 50- to 80-fold higher than for E. coli, Lactobacillus casei, and T. maritima dihydrofolate reductases, whereas the apparent Km value for NADPH, though higher, remains in the same order of magnitude. At 5 degrees C these values are not significantly modified. The enzyme is also much less sensitive than its E. coli counterpart to the inhibitors methotrexate and trimethoprim. The catalytic efficiency (kcat/Km) with respect to dihydrofolate is thus much lower than in the other three bacteria. The higher affinity for NADPH could have been maintained by selection since NADPH assists the release of the product tetrahydrofolate. Dihydrofolate reductase adaptation to low temperature thus appears to have entailed a pronounced trade-off between affinity and catalytic velocity. The kinetic features of this psychrophilic protein suggest that enzyme adaptation to low temperature may be constrained by natural limits to optimization of catalytic efficiency.  相似文献   

9.
Proteins from (hyper-)thermophiles are known to exhibit high intrinsic stabilities. Commonly, their thermodynamic characterization is impeded by irreversible side reactions of the thermal analysis or calorimetrical problems. Small single-domain proteins are suitable candidates to overcome these obstacles. Here, the thermodynamics of the thermal denaturation of the recombinant cold-shock protein (Csp) from the hyperthermophilic bacterium Thermotoga maritima (Tm) was studied by differential scanning calorimetry. The unfolding transition can be described over a broad pH range (3.5-8.5) by a reversible two-state process. Maximum stability (DeltaG (25 degrees C)=6.5 kcal/mol) was observed at pH 5-6 where Tm Csp unfolds with a melting temperature at 95 degrees C. The heat capacity difference between the native and the denatured states is 1.1(+/-0.1) kcal/(mol K). At pH 7, thermal denaturation occurs at 82 degrees C. The corresponding free energy profile has its maximum at 30 degrees C with DeltaGN-->U=4.8(+/-0.5) kcal/mol. At the optimal growth temperature of T. maritima (80 degrees C), Tm Csp in the absence of ligands is only marginally stable, with a free energy of stabilization not far beyond the thermal energy. With the known stabilizing effect of nucleic acids in mind, this suggests a highly dynamical interaction of Tm Csp with its target molecules.  相似文献   

10.
The thermal denaturation of the dimeric enzyme triosephosphate isomerase (TIM) from Saccharomyces cerevisiae was studied by spectroscopic and calorimetric methods. At low protein concentration the structural transition proved to be reversible in thermal scannings conducted at a rate greater than 1.0 degrees C min(-1). Under these conditions, however, the denaturation-renaturation cycle exhibited marked hysteresis. The use of lower scanning rates lead to pronounced irreversibility. Kinetic studies indicated that denaturation of the enzyme likely consists of an initial first-order reaction that forms thermally unfolded (U) TIM, followed by irreversibility-inducing reactions which are probably linked to aggregation of the unfolded protein. As judged from CD measurements, U possesses residual secondary structure but lacks most of the tertiary interactions present in native TIM. Furthermore, the large increment in heat capacity upon denaturation suggests that extensive exposure of surface area occurs when U is formed. Above 63 degrees C, reactions leading to irreversibility were much slower than the unfolding process; as a result, U was sufficiently long-lived as to allow an investigation of its refolding kinetics. We found that U transforms into nativelike TIM through a second-order reaction in which association is coupled to the regain of secondary structure. The rate constants for unfolding and refolding of TIM displayed temperature dependences resembling those reported for monomeric proteins but with considerably larger activation enthalpies. Such large temperature dependences seem to be determinant for the occurrence of kinetically controlled transitions and thus constitute a simple explanation for the hysteresis observed in thermal scannings.  相似文献   

11.
Recombinant maltose-binding protein from Thermotoga maritima (TmMBP) was expressed in Escherichia coli and purified to homogeneity, applying heat incubation of the crude extract at 75 degrees C. As taken from the spectral, physicochemical and binding properties, the recombinant protein is indistinguishable from the natural protein isolated from the periplasm of Thermotoga maritima. At neutral pH, TmMBP exhibits extremely high intrinsic stability with a thermal transition >105 degrees C. Guanidinium chloride-induced equilibrium unfolding transitions at varying temperatures result in a stability maximum at approximately 40 degrees C. At room temperature, the thermodynamic analysis of the highly cooperative unfolding equilibrium transition yields DeltaG(N-->U)=100(+/-5) kJ mol(-1 )for the free energy of stabilization. Compared to mesophilic MBP from E. coli as a reference, this value is increased by about 60 kJ mol(-1). At temperatures around the optimal growth temperature of T. maritima (t(opt) approximately 80 degrees C), the yield of refolding does not exceed 80 %; the residual 20 % are misfolded, as indicated by a decrease in stability as well as loss of the maltose-binding capacity. TmMBP is able to bind maltose, maltotriose and trehalose with dissociation constants in the nanomolar to micromolar range, combining the substrate specificities of the homologs from the mesophilic bacterium E. coli and the hyperthermophilic archaeon Thermococcus litoralis. Fluorescence quench experiments allowed the dissociation constants of ligand binding to be quantified. Binding of maltose was found to be endothermic and entropy-driven, with DeltaH(b)=+47 kJ mol(-1) and DeltaS(b)=+257 J mol(-1) K(-1). Extrapolation of the linear vant'Hoff plot to t(opt) resulted in K(d) approximately 0.3 microM. This result is in agreement with data reported for the MBPs from E. coli and T. litoralis at their respective optimum growth temperatures, corroborating the general observation that proteins under their specific physiological conditions are in corresponding states.  相似文献   

12.
The soluble ATPase (adenosine triphosphatase) from Micrococcus lysodeikticus underwent a major unfolding transition when solutions of the enzyme at pH 7.5 were heated. The midpoint occurred at 46 degrees C when monitored by changes in enzymic activity and intrinsic fluorescence, and at 49 degrees C when monitored by circular dichroism. The products of thermal denaturation retained much secondary structure, and no evidence of subunit dissociation was detected after cooling at 20 degrees C. The thermal transition was irreversible, and thiol groups were not involved in the irreversibility. The presence of ATP, adenylyl imidodiphosphate, CaCl2 or higher concentrations of ATPase conferred stability against thermal denaturation, but did not prevent the irreversibility one denaturation had taken place. In the presence of guanidinium chloride, thermal denaturation occurred at lower temperatures. The midpoints of the transition were 45 degrees C in 0.25 M-, 38 degrees C in 0.5 M-and 30 degrees C in 0.75 M-denaturant. In the highest concentration of guanidinium chloride a similar unfolding transition induced by cooling was observed. Its midpoint was 9 degrees C, and the temperature of maximum stability of the protein was 20 degrees C. The discontinuities occurring the the Arrhenius plots of the activity of this enzyme had no counterpart in variations in the far-u.v. circular dichroism or intrinsic fluorescence of the protein at the same temperature.  相似文献   

13.
Characteristics of a de novo designed protein.   总被引:1,自引:1,他引:0       下载免费PDF全文
A series of 204 amino acid proteins intended to form TIM (triose phosphate isomerase) barrel structures were designed de novo. Each protein was synthesized by expression of the synthetic gene as a fusion protein with a portion of human growth hormone in an Escherichia coli host. After BrCN treatment, the protein was purified to homogeneity. The refolded proteins are globular and exist as monomers. One of the designed proteins is stable toward guanidine hydrochloride (GuHCl) denaturation, with a midpoint of 2.6 M determined from CD and tryptophan fluorescence measurements. The GuHCl denaturation is well described by a 2-state model. The NMR spectra, the thermal denaturation curves, and the 1-anilino-8-naphthalene sulfonic acid binding imply that the stability of the protein arises mainly from hydrophobic interactions, which are probably of a nonspecific nature. The protein has a similar shape to that of rabbit triosephosphate isomerase, as determined by electron microscopy.  相似文献   

14.
A full length (192 amino acids) uracil-DNA glycosylase (TMUDG) has been expressed and purified from the extreme thermophile Thermotoga maritima. This protein is active up to 85 degrees C. The enzyme is product inhibited by abasic sites in DNA and weakly inhibited by uracil. TMUDG was originally cloned from an ORF which encoded a protein of 185 amino acids. This shorter protein was stable up to 70-75 degrees C and it seemed unusual that this enzyme had an optimal activity temperature below the growth temperature of the organism (80-90 degrees C). Following the publication of the complete genomic sequence of T. maritima, it was shown that the gene contains an additional seven amino acids (LYTREEL) at the N-terminal end of the protein. It is suggested that these seven residues are important in maintaining proper protein folding that results in increased temperature stability. We have also demonstrated that TMUDG can substitute for the Escherichia coli uracil-DNA glycosylase and initiate base excision repair using a closed circular DNA substrate containing a unique U:G base pair.  相似文献   

15.
The gene encoding the type I pullulanase from the extremely thermophilic anaerobic bacterium Fervidobacterium pennavorans Ven5 was cloned and sequenced in Escherichia coli. The pulA gene from F. pennavorans Ven5 had 50.1% pairwise amino acid identity with pulA from the anaerobic hyperthermophile Thermotoga maritima and contained the four regions conserved among all amylolytic enzymes. The pullulanase gene (pulA) encodes a protein of 849 amino acids with a 28-residue signal peptide. The pulA gene was subcloned without its signal sequence and overexpressed in E. coli under the control of the trc promoter. This clone, E. coli FD748, produced two proteins (93 and 83 kDa) with pullulanase activity. A second start site, identified 118 amino acids downstream from the ATG start site, with a Shine-Dalgarno-like sequence (GGAGG) and TTG translation initiation codon was mutated to produce only the 93-kDa protein. The recombinant purified pullulanases (rPulAs) were optimally active at pH 6 and 80 degrees C and had a half-life of 2 h at 80 degrees C. The rPulAs hydrolyzed alpha-1,6 glycosidic linkages of pullulan, starch, amylopectin, glycogen, alpha-beta-limited dextrin. Interestingly, amylose, which contains only alpha-1,4 glycosidic linkages, was not hydrolyzed by rPulAs. According to these results, the enzyme is classified as a debranching enzyme, pullulanase type I. The extraordinary high substrate specificity of rPulA together with its thermal stability makes this enzyme a good candidate for biotechnological applications in the starch-processing industry.  相似文献   

16.
An alpha-galactosidase gene from Thermus brockianus ITI360 was cloned, sequenced, and expressed in Escherichia coli, and the recombinant protein was purified. The gene, designated agaT, codes for a 476-residue polypeptide with a calculated molecular mass of 53, 810 Da. The native structure of the recombinant enzyme (AgaT) was estimated to be a tetramer. AgaT displays amino acid sequence similarity to the alpha-galactosidases of Thermotoga neapolitana and Thermotoga maritima and a low-level sequence similarity to alpha-galactosidases of family 36 in the classification of glycosyl hydrolases. The enzyme is thermostable, with a temperature optimum of activity at 93 degrees C with para-nitrophenyl-alpha-galactopyranoside as a substrate. Half-lives of inactivation at 92 and 80 degrees C are 100 min and 17 h, respectively. The pH optimum is between 5.5 and 6.5. The enzyme displayed high affinity for oligomeric substrates. The K(m)s for melibiose and raffinose at 80 degrees C were determined as 4.1 and 11.0 mM, respectively. The alpha-galactosidase gene in T. brockianus ITI360 was inactivated by integrational mutagenesis. Consequently, no alpha-galactosidase activity was detectable in crude extracts of the mutant strain, and it was unable to use melibiose or raffinose as a single carbohydrate source.  相似文献   

17.
以海栖热袍菌 (Thermotoga maritima) MSB8菌株基因组DNA为模板,通过PCR扩增出木聚糖酶(XylanaseB)基因, 将此基因克隆至大肠杆菌表达载体pET_28a(+)和毕赤酵母表达载体pPIC9K,并分别转化大肠杆菌 BL21和毕赤酵母GS115。该木聚糖酶在大肠杆菌细胞中表达量高, 但不能分泌; 而在毕赤酵母细胞的表达产物可分泌至胞外。酶学性质分析表明,此酶分子量约为40kD,其最适反应温度为90℃, 最适反应pH值为6.65,且在碱性条件下稳定,具有重要的工业应用前景。  相似文献   

18.
A thermostable mutant of kanamycin nucleotidyltransferase (KNTase) with a single amino acid replacement of Asp at position 80 by Tyr has been isolated by a novel screening method in a previous study [Matsumura, M. & Aiba, S. (1985) J. Biol. Chem. 260, 15298-15303]. To elucidate the role of Tyr80 in stabilizing the enzyme, the KNTase gene was modified by site-directed mutagenesis so that the codon for Asp80 of the wild type was replaced by that for Ser, Thr, Ala, Val, Leu, Phe and Trp, respectively. The eight mutant KNTases including Tyr80 were all purified, as well as the wild-type enzyme. The heat-inactivation rate constants were determined at 58 degrees C and the half-life values were found to be correlated with the hydrophobicity of the amino acid residues replaced at the unique position. The Gibbs energy change of unfolding in water of KNTase assessed from urea denaturation (25 degrees C, pH 7.0) was also found to be correlated with hydrophobicity. The results suggest that different amino acids at position 80 of KNTase contribute to the stability of the protein by hydrophobic interactions. In the case of tyrosine at position 80 the unusually high stability of the enzyme compared to the Phe80 enzyme suggests that the hydroxyl group also contributes to the conformational stability.  相似文献   

19.
AIMS: Characterization of a thermostable recombinant beta-galactosidase from Thermotoga maritima for the hydrolysis of lactose and the production of galacto-oligosaccharides. METHODS AND RESULTS: A putative beta-galactosidase gene of Thermotoga maritima was expressed in Escherichia coli as a carboxyl terminal His-tagged recombinant enzyme. The gene encoded a 1100-amino acid protein with a calculated molecular weight of 129,501. The expressed enzyme was purified by heat treatment, His-tag affinity chromatography, and gel filtration. The optimum temperatures for beta-galactosidase activity were 85 and 80 degrees C with oNPG and lactose, respectively. The optimum pH value was 6.5 for both oNPG and lactose. In thermostability experiments, the enzyme followed first-order kinetics of thermal inactivation and its half-life times at 80 and 90 degrees C were 16 h and 16 min, respectively. Mn2+ was the most effective divalent cation for beta-galactosidase activity on both oNPG and lactose. The Km and Vmax values of the thermostable enzyme for oNPG at 80 degrees C were 0.33 mm and 79.6 micromol oNP min(-1) mg(-1). For lactose, the Km and Vmax values were dependent on substrate concentrations; 1.6 and 63.3 at lower concentrations up to 10 mm of lactose and 27.8 mm and 139 micromol glucose min(-1) mg(-1) at higher concentrations, respectively. The enzyme displayed non-Michaelis-Menten reaction kinetics with substrate activation, which was explained by simultaneous reactions of hydrolysis and transgalactosylation. CONCLUSIONS: The results suggest that the thermostable enzyme may be suitable for both the hydrolysis of lactose and the production of galacto-oligosaccharides. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings of this work contribute to the knowledge of hydrolysis and transgalactosylation performed by beta-galactosidase of hyperthermophilic bacteria.  相似文献   

20.
The transparency of the eye lens depends on the high solubility and stability of the lens crystallin proteins. The monomeric gamma-crystallins and oligomeric beta-crystallins have paired homologous double Greek key domains, presumably evolved through gene duplication and fusion. Prior investigation of the refolding of human gammaD-crystallin revealed that the C-terminal domain folds first and nucleates the folding of the N-terminal domain. This result suggested that the human N-terminal domain might not be able to fold on its own. We constructed and expressed polypeptide chains corresponding to the isolated N- and C-terminal domains of human gammaD-crystallin, as well as the isolated domains of human gammaS-crystallin. Both circular dichroism and fluorescence spectroscopy indicated that the isolated domains purified from Escherichia coli were folded into native-like monomers. After denaturation, the isolated domains refolded efficiently at pH 7 and 37 degrees C into native-like structures. The in vitro refolding of all four domains revealed two kinetic phases, identifying partially folded intermediates for the Greek key motifs. When subjected to thermal denaturation, the isolated N-terminal domains were less stable than the full-length proteins and less stable than the C-terminal domains, and this was confirmed in equilibrium unfolding/refolding experiments. The decrease in stability of the N-terminal domain of human gammaD-crystallin with respect to the complete protein indicated that the interdomain interface contributes of 4.2 kcal/mol to the overall stability of this very long-lived protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号