首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The development of gene editing techniques, capable of producing plants and animals with new and improved traits, is revolutionizing the world of plant and animal breeding and rapidly advancing to commercial reality. However, from a regulatory standpoint the Government of Canada views gene editing as another tool that will join current methods used to develop desirable traits in plants and animals. This is because Canada focusses on the potential risk resulting from the novelty of the trait, or plant or animal product entering the Canadian environment or market place, rather than the process or method by which it was created. The Canadian Food Inspection Agency is responsible for the regulation of the environmental release of plants with novel traits, and novel livestock feeds, while Health Canada is responsible for the regulation of novel foods. Environment and Climate Change Canada, in partnership with Health Canada, regulates modified animals for entry into the environment. In all cases, these novel products may be the result of conventional breeding, mutagenesis, recombinant DNA techniques or other methods of plant or animal breeding such as gene editing. This novelty approach allows the Canadian regulatory system to efficiently adjust to any new developments in the science of plant and animal breeding and allows for risk-appropriate regulatory decisions. This approach encourages innovation while maintaining science-based regulatory expertise. Canadian regulators work cooperatively with proponents to determine if their gene editing-derived product meets the definition of a novel product, and whether it would be subject to a pre-market assessment. Therefore, Canada’s existing regulatory system is well positioned to accommodate any new innovations or technologies in plant or animal breeding, including gene editing.

  相似文献   

2.
In May 2012, Health Canada and other participants held a National Summit on Subsequent Entry Biologics (SEBs). Health Canada released a guidance document in March 2010 describing policy positions and data requirements for approval of SEBs. While Health Canada and health agencies in other regulatory jurisdictions are aligned on many scientific principles related to biosimilar drugs, Health Canada's specific requirements may not be widely understood by many Canadian stakeholders. The Summit provided an opportunity for education and dialog among physicians who prescribe biologics, provincial payers, and industry on the following topics: preclinical and clinical comparability studies; manufacturing and other product differences; extrapolation of indications; substitution and interchangeability of SEBs with reference biologic drugs in clinical practice; payers' current perspective; pharmacovigilance and naming. It is anticipated that the consensus reached at this meeting will further educate Canadian healthcare professionals, provincial payers, and insurers about the appropriate use of SEBs, and may be of general interest to others internationally.  相似文献   

3.
There is a widely held expectation of clinical advance with the development of gene and cell-based therapies (GCTs). Yet, establishing benefits and risks is highly uncertain. We examine differences in decision-making for GCT approval between jurisdictions by comparing regulatory assessment procedures in the United States (US), European Union (EU) and Japan. A cohort of 18 assessment procedures was analyzed by comparing product characteristics, evidentiary and non-evidentiary factors considered for approval and post-marketing risk management. Product characteristics are very heterogeneous and only three products are marketed in multiple jurisdictions. Almost half of all approved GCTs received an orphan designation. Overall, confirmatory evidence or indications of clinical benefit were evident in US and EU applications, whereas in Japan approval was solely granted based on non-confirmatory evidence. Due to scientific uncertainties and safety risks, substantial post-marketing risk management activities were requested in the EU and Japan. EU and Japanese authorities often took unmet medical needs into consideration in decision-making for approval. These observations underline the effects of implemented legislation in these two jurisdictions that facilitate an adaptive approach to licensing. In the US, the recent assessments of two chimeric antigen receptor-T cell (CAR-T) products are suggestive of a trend toward a more permissive approach for GCT approval under recent reforms, in contrast to a more binary decision-making approach for previous approvals. It indicates that all three regulatory agencies are currently willing to take risks by approving GCTs with scientific uncertainties and safety risks, urging them to pay accurate attention to post-marketing risk management.  相似文献   

4.
Emerging issues in traditional Chinese medicine   总被引:1,自引:0,他引:1  
Traditional Chinese medicine (TCM) has many beneficial effects and has been practiced for several thousand years. It is known to treat the cause of a disease rather than to alleviate its symptoms. Based on a belief that TCM is natural, safe, and of lower cost, consumers worldwide are spending more out-of-pocket money on this form of therapy. This increased spending, and reports of adverse reactions, has drawn the attention of many regulatory agencies. Scientists have called for more evidence-based and scientific research on the risks and benefits of TCM. In Canada, the Natural Health Product Regulations came into effect January 2004. TCM herbal product manufacturers will need to provide products of reputable quality to the market. Many will apply modern technology and good science to support their products. The issues facing producers, scientists, and consumers alike are quality control and assessment, standardization of bioactive components, mechanisms of actions, and integration of the evolved modern Chinese medicine into the healthcare system. Solid science, better regulation of the final product, and better education of consumers are necessary to extract the best of TCM to complement existing conventional medicine to deliver the best healthcare.  相似文献   

5.
Bioprocess engineering has developed as a discipline to design optimal culture conditions and bioreactor operation protocols for production cell lines engineered for constitutive expression of desired protein pharmaceuticals. With the advent of heterologous gene regulation systems it has become possible to fine-tune expression of difficult-to-produce protein pharmaceuticals to optimal levels and to conditionally engineer cell metabolism for the best production performance. However, most of the small-molecules used to trigger expression of product or metabolic engineering product genes are incompatible with downstream processing regulations or process economics. Recent progress in product gene control design has resulted in the development of bioprocess-compatible regulation systems, which are responsive to physical parameters such as temperature or physiologic trigger molecules that are either an inherent part of host cell metabolism or intrinsic components of licensed protein-free cell culture media, such as redox status, vitamin H and gaseous acetaldehyde. While all of these systems have been shown to fine-tune product gene expression independent of the host cell metabolism some of them can be plugged into metabolic networks to capture critical physiologic parameters and convert them into an optimal production response. Assembly of individual product gene control modalities into synthetic networks has recently enabled construction of autonomously regulated time-delay or cell density-sensitive gene circuits, which trigger population-wide induction of product gene expression at a predefined time or culture density. We provide a comprehensive overview on the latest developments in the design of bioprocess-compatible product gene control systems.  相似文献   

6.
The edict for producing clinically compliant human embryonic stem cells (hESCs) necessitates adherence to global ethical standards for egg procurement and embryo donation, conformity to regulations controlling clinical-grade cell and tissue product development, and compliance with current good tissue and manufacturing practices (cGTPs and cGMPs, respectively). For example, the U.S. FDA Center for Biologics Evaluation and Research recently promulgated regulations regarding human cells and cellular-based products (HCT/Ps) intended for tissue repair or replacement. Issued under Code of Federal Regulations parts 1270 and 1271 (Code of Federal Regulations, 2006a, 2006b), the rules are broadened by requirements for donor selection and cGMPs for HCT/Ps. By adhering to regulations and in anticipation of future standards, we have generated six clinical-grade hESC lines. Here we describe their manufacture, from embryo procurement to line characterization, including sterility and pathogen testing (Figure 1). To our knowledge, the lines represent the first to have been produced in compliance with international regulatory requirements, suitable for therapeutic use.  相似文献   

7.
We developed an algorithm, Lever, that systematically maps metazoan DNA regulatory motifs or motif combinations to sets of genes. Lever assesses whether the motifs are enriched in cis-regulatory modules (CRMs), predicted by our PhylCRM algorithm, in the noncoding sequences surrounding the genes. Lever analysis allows unbiased inference of functional annotations to regulatory motifs and candidate CRMs. We used human myogenic differentiation as a model system to statistically assess greater than 25,000 pairings of gene sets and motifs or motif combinations. We assigned functional annotations to candidate regulatory motifs predicted previously and identified gene sets that are likely to be co-regulated via shared regulatory motifs. Lever allows moving beyond the identification of putative regulatory motifs in mammalian genomes, toward understanding their biological roles. This approach is general and can be applied readily to any cell type, gene expression pattern or organism of interest.  相似文献   

8.
We investigate in this paper reverse engineering of gene regulatory networks from time-series microarray data. We apply dynamic Bayesian networks (DBNs) for modeling cell cycle regulations. In developing a network inference algorithm, we focus on soft solutions that can provide a posteriori probability (APP) of network topology. In particular, we propose a variational Bayesian structural expectation maximization algorithm that can learn the posterior distribution of the network model parameters and topology jointly. We also show how the obtained APPs of the network topology can be used in a Bayesian data integration strategy to integrate two different microarray data sets. The proposed VBSEM algorithm has been tested on yeast cell cycle data sets. To evaluate the confidence of the inferred networks, we apply a moving block bootstrap method. The inferred network is validated by comparing it to the KEGG pathway map.  相似文献   

9.
In recent years, there has been an increase in research with biological agents, particularly those that pose a potential for use by terrorists. In this environment, laws have been enacted and regulations developed to ensure the appropriate use of specified "select agents and toxins" for legitimate research. Within this regulatory environment, it has been necessary for institutions and investigators to adapt to an entirely new set of requirements to begin or continue to work with these pathogens. Registration and approval for use of select agents and toxins, security and safety requirements, and daunting record-keeping requirements are only some of the regulatory challenges that researchers face in working with these agents. A brief overview of recent regulations is presented, as well as where to obtain additional information on regulations, standards, and guidelines related to work with select agents and toxins.  相似文献   

10.
11.

Background

It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks.

Results

In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network) to address the underlying regulations of genes that can span any unit(s) of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings.

Conclusion

We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex gene regulations related to the development, aging and progressive pathogenesis of a complex disease where potential dependences between different experiment units might occurs.  相似文献   

12.
For the approval of biosimilars, it is, in most cases, necessary to conduct large Phase III clinical trials in patients to convince the regulatory authorities that the product is comparable in terms of efficacy and safety to the originator product. As the originator product has already been studied in several trials beforehand, it seems natural to include this historical information into the showing of equivalent efficacy. Since all studies for the regulatory approval of biosimilars are confirmatory studies, it is required that the statistical approach has reasonable frequentist properties, most importantly, that the Type I error rate is controlled—at least in all scenarios that are realistic in practice. However, it is well known that the incorporation of historical information can lead to an inflation of the Type I error rate in the case of a conflict between the distribution of the historical data and the distribution of the trial data. We illustrate this issue and confirm, using the Bayesian robustified meta‐analytic‐predictive (MAP) approach as an example, that simultaneously controlling the Type I error rate over the complete parameter space and gaining power in comparison to a standard frequentist approach that only considers the data in the new study, is not possible. We propose a hybrid Bayesian‐frequentist approach for binary endpoints that controls the Type I error rate in the neighborhood of the center of the prior distribution, while improving the power. We study the properties of this approach in an extensive simulation study and provide a real‐world example.  相似文献   

13.
Yamaguchi T  Arato T 《Biologicals》2011,39(5):328-332
Recently, WHO, EU, Japan and Canada have published guidelines on biosimilar/follow-on biologics. While there seems to be no significant difference in the general concept in these guidelines, the data to be submitted for product approval are partially different. Differences have been noted in the requirements for comparability studies on stability, prerequisites for reference product, or for the need of comparability exercise for determination of process-related impurities. In Japan, there have been many discussions about the amount and extent of data for approval of follow-on biologics. We try to clarify the scientific background and rational for regulatory pathway of biosimilar/follow-on biologics in Japan in comparison with the guidelines available from WHO, EU and Canada. In this article, we address and discuss the scientific background underlying these differences to facilitate the harmonization of follow-on biologic principles in the guidelines in future.  相似文献   

14.
15.
16.
Recent advances in high-throughput DNA microarrays and chromatin immunoprecipitation (ChIP) assays have enabled the learning of the structure and functionality of genetic regulatory networks. In light of these heterogeneous data sets, this paper proposes a novel approach for reconstruction of genetic regulatory networks based on the posterior probabilities of gene regulations. Built within the framework of Bayesian statistics and computational Monte Carlo techniques, the proposed approach prevents the dichotomy of classifying gene interactions as either being connected or disconnected, thereby it reduces significantly the inference errors. Simulation results corroborate the superior performance of the proposed approach relative to the existing state-of-the-art algorithms. A genetic regulatory network for Saccharomyces cerevisiae is inferred based on the published real data sets, and biological meaningful results are discussed.  相似文献   

17.
18.
Biosimilars are protein products that are sufficiently similar to a biopharmaceutical already approved by a regulatory agency. Several biotechnology companies and generic drug manufacturers in Asia and Europe are developing biosimilars of tumor necrosis factor inhibitors and rituximab. A biosimilar etanercept is already being marketed in Colombia and China. In the US, several natural source products and recombinant proteins have been approved as generic drugs under Section 505(b)(2) of the Food, Drug, and Cosmetic Act. However, because the complexity of large biopharmaceuticals makes it difficult to demonstrate that a biosimilar is structurally identical to an already approved biopharmaceutical, this Act does not apply to biosimilars of large biopharmaceuticals. Section 7002 of the Patient Protection and Affordable Care Act of 2010, which is referred to as the Biologics Price Competition and Innovation Act of 2009, amends Section 351 of the Public Health Service Act to create an abbreviated pathway that permits a biosimilar to be evaluated by comparing it with only a single reference biological product. This paper reviews the processes for approval of biosimilars in the US and the European Union and highlights recent changes in federal regulations governing the approval of biosimilars in the US.  相似文献   

19.
Somatic cell and gene therapy involve the application of biological technologies to an individual patient through the use of living cells which provide a therapeutic benefit (Aliski, 1991). Various forms of cellular and gene therapies are being developed and evaluated in an increasing number of clinical trials for congential and acquired disorders. The potential and progress of these therapeutic applications have resulted in an increasing effort by the Food and Drug Administration (FDA) to develop the regulatory framework under which these therapeutic approaches would insure safety and efficacy, the primary mandate of the FDA.Over five years ago Cellcor began to define the parameters, specifications, and conditions relevant to a Quality Assurance/Quality Control (QA/QC) program that has evolved to insure safety and maximize the efficacy of applications of the company'sex vivo technology, autolymphocyte therapy. Autolymphocyte therapy is an outpatient form of somatic cell immunotherapy based upon the infusion of T cells that have been activatedex vivo using a combination of previously generated autologous cytokines and an anti-CD3 monoclonal antibody.We have been able to demonstrate the feasibility for the safe, controlled, and consistent preparation and delivery of a cellular therapy by application of relevant GMP regulations. This presentation reviews aspects of this program and chronicles our experience which at present amounts to over 4400 infusions for over 700 patients. This program provides a high degree of assurance that a cellular therapy program can be carried out in a multisite mode involving hundreds of patients through the strict adherence to cGMP as set forth in existing regulations. It would be prudent that developers of cellular andex vivo gene therapies establish a similar cell processing and QA/QC infrastructure at an early developmental stage to optimize safety and reproducibility and facilitate regulatory review.  相似文献   

20.
Many important biological processes (e.g. cellular differentiation during development, aging, disease etiology etc.) are very unlikely controlled by a single gene instead by the underlying complex regulatory interactions between thousands of genes within …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号