首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
2.
Unfolding of the gene expression program that converts precursor cells to their terminally differentiated counterparts is critically dependent on the nucleosome-remodeling activity of the mammalian SWI/SNF complex. The complex can be powered by either of two alternative ATPases, BRM or BRG1. BRG1 is critical for development and the activation of tissue specific genes and is found in two major stable configurations. The complex of BRG1-associated factors termed BAF is the originally characterized form of mammalian SWI/SNF. A more recently recognized configuration shares many of the same subunits but is termed PBAF in recognition of a unique subunit, the polybromo protein (PBRM1). Two other unique subunits, BRD7 and ARID2, are also diagnostic of PBAF. PBAF plays an essential role in development, apparent from the embryonic lethality of Pbmr1-null mice, but very little is known about the role of PBAF, or its signature subunits, in tissue-specific gene expression in individual differentiation programs. Osteoblast differentiation is an attractive model for tissue-specific gene expression because the process is highly regulated and remains tightly synchronized over a period of several weeks. This model was used here, with a stable shRNA-mediated depletion approach, to examine the role of the signature PBAF subunit, ARID2, during differentiation. This analysis identifies a critical role for ARID2-containing complexes in promoting osteoblast differentiation and supports a view that the PBAF subset of SWI/SNF contributes importantly to maintaining cellular identity and activating tissue-specific gene expression.  相似文献   

3.
4.
《Molecular cell》2022,82(13):2472-2489.e8
  1. Download : Download high-res image (165KB)
  2. Download : Download full-size image
  相似文献   

5.
6.
BRCA1 is a tumor suppressor gene linked to familial breast and ovarian cancer. The BRCA1 protein has been implicated in a diverse set of cellular functions, including activation of gene expression by the p53 tumor suppressor and control of homologous recombination (HR) during DNA repair. Prior reports have demonstrated that BRCA1 can exist in cells in a complex with the BRG1-based SWI/SNF ATP-dependent chromatin remodeling enzymes and that SWI/SNF components contribute to p53-mediated gene activation. To investigate the link between SWI/SNF function and BRCA1 mediated effects on p53-mediated gene activation and on mechanisms of homologous recombination, we have utilized mammalian cells that inducibly express an ATPase-deficient, dominant negative SWI/SNF enzymes. Mutant SWI/SNF ATPases retain the ability to interact with BRCA1 in cells. We report that expression of dominant negative SWI/SNF enzymes does not affect p53-mediated induction of the p21 cyclin dependent kinase inhibitor or the Mdm2 E3 ubiquitin ligase that regulates p53 in cells exposed to UV or gamma irradiation. Similarly, integration of a reporter that monitors homologous recombination by gene conversion into these cells demonstrated no change in the recombination rate in the absence of functional SWI/SNF enzyme. We conclude that the SWI/SNF chromatin remodeling enzymes may contribute to but are not required for these processes.  相似文献   

7.
8.
9.
The snr1 gene of Drosophila melanogaster encodes a conserved component of the multiprotein Brahma (Brm) complex, a counterpart to the SWI/SNF complexes that participate in ATP-dependent chromatin remodeling. Loss-of-function and null mutations in the snr1 gene reveal its essential role in Drosophila development. We identified new mutant alleles and ectopically expressed deleted forms to dissect the specific functions of SNR1. Somatic and germ cell clone analyses confirmed its requirement in a continuous and widespread fashion for proper cell fate determination and oogenesis. Expression of SNR1 transgenes revealed unexpected roles in wing patterning, abdomen development, oogenesis, and sustained adult viability. A widespread distribution of SNR1 and BRM on the salivary gland polytene chromosomes showed that the Brm complex associated with many genes, but not always at transcribed loci, consistent with genetic data suggesting roles in both gene activation and repression. Despite essential Brm complex functions in leg development, genetic and protein localization studies revealed that snr1 was not required or expressed in all tissues dependent on Brm complex activities. Thus, SNR1 is essential for some, but not all Brm functions, and it likely serves as an optional subunit, directing Brm complex activity to specific gene loci or cellular processes.  相似文献   

10.
11.
A new temperature-sensitive mutant of Saccharomyces cerevisiae was isolated. Arrested cells grown at the nonpermissive temperature were of dumb-bell shape and contained large vacuoles. A DNA fragment was cloned based on its ability to complement this temperature sensitivity. The HTR1 gene encodes a putative protein of 93 kDa without significant homology to any known proteins. The gene was mapped between ade5 and lys5 on the left arm of chromosome VII. The phenotype of the gene disruptant appeared to be strain-specific; disruption of the gene in strain W303 caused the cells to become temperature sensitive. The arrested phenotype here was similar to that of the original is mutant and cells in G2/M phase predominated at high temperature. Another disruptant in a strain YPH background grew slowly at high temperature due to slow progression through G2/M phase, and morphologically abnormal (elongated) cells accumulated. A single-copy suppressor that alleviated the temperature-sensitive defects in both strains was identified as MCS1/SSD1. The wild-type strains W303 and YPH are known to carry defective MCS1/SSD1 alleles; hence HTR1 may function redundantly with MCS1/SSD1 to suppress the temperature-sensitive phenotypes. In addition, based on a halo bioassay, the disruptant strains appeared to be defective in recovery from, or adaptive response to G1 arrest mediated by mating pheromone, even at the permissive temperature. Thus the gene has at least two functions and is designated HTR1 (required for high temperature growth and recovery from G1 arrest induced by mating pheromone).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号