首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective was to compare the efficiency of various vitrification techniques and solutions for preserving morphology and viability of preantral caprine follicles enclosed in ovarian tissue. Fragments of ovarian cortex were cryopreserved by conventional vitrification (CV) in French straws, vitrification in macrotubes (MTV), or solid-surface vitrification (SSV). Six solutions containing 6 M ethylene glycol, with or without sucrose (SUC; 0.25 or 0.50 M) and/or 10% fetal calf serum (FCS) were tested (Experiment I). After 1 wk, samples were warmed and preantral follicles were examined histologically. To evaluate follicular viability (Experiment II), ovarian fragments were vitrified with the three techniques listed above, in a solution containing 0.25 M SUC and 10% FCS. After warming, follicles were assessed by the trypan blue dye exclusion test. In Experiment III, preantral follicles enclosed in ovarian tissue were vitrified using the protocol which yielded the highest percentage of viable preantral follicles (SSV with 0.25 M SUC and 10% SFB). After warming, the preantral follicles enclosed in ovarian tissue were cultured in vitro and then, were analyzed by histology and fluorescence microscopy (calcein-AM and ethidium homodimer-1). Every vitrification protocol significantly reduced the percentages of morphologically normal follicles relative to the control (88.0%); however, the addition of 0.25 M SUC and 10% FCS to the vitrification solution improved preservation of follicular morphology (67.4, 67.4, and 72.0% for CV, MTV, and SSV, respectively). Although follicular viability after SSV (80.7%) did not differ from that in fresh (non-vitrified) ovarian tissues (88.0%), after in vitro culture, percentages of viable follicles were significantly reduced (70.0%). Percentages of morphologically normal follicles after in vitro culture of vitrified ovarian tissue were similar (76.0%) to those in ovarian cortex fragments cultured without previous vitrification (83.2%). In conclusion, SSV using a solution containing 0.25 M SUC and 10% FCS, was the most efficient method for vitrifying caprine ovarian tissue.  相似文献   

2.
Caprine preantral follicles within ovarian fragments were exposed to or vitrified in the presence of sucrose, dimethyl sulfoxide (DMSO), ethylene glycol (EG), or various combinations thereof. The fragments were cryopreserved by using either a conventional (CV) or a solid-surface vitrification (SSV) protocol, and the cryoprotectants were removed by equilibrating vitrified ovarian fragments in “warming solution” consisting of minimum essential medium and heat-inactivated fetal calf serum (MEM+) followed by washes in MEM+ with or without sucrose. Histological analysis of follicle integrity showed that the percentages of normal follicles in ovarian fragments vitrified in sucrose mixed with EG and/or DMSO (CV method) or mixed with EG or DMSO (SSV method) followed by washes in MEM+ plus sucrose were similar to those of controls (ovarian fragments fixed without previous vitrification). Unlike for MEM+ (supplemented or unsupplemented by sucrose) and DMSO followed by washes in the absence of sucrose, the percentages of normal follicles found after exposure to cryoprotectant did not significantly differ from that found after vitrification, indicating that follicular degeneration was attributable to a toxic effect of cryoprotectants and not to the vitrification procedure. The viability of preantral follicles after the CV and SSV procedures was investigated by using calcein-AM and the ethidium-homodimer as “live” and “dead” markers, respectively. In both tested vitrification procedures, the highest percentages of viable follicles were observed when a mixture of sucrose and EG (70.3% for CV and 72.4% for SSV) was used. Preantral follicles were also vitrified (either by CV or SSV) in sucrose and EG and then cultured for 24 h, after which their viability was compared with that of cultured fresh and uncultured vitrified follicles. The viability of these follicles was maintained after SSV, but not after CV. Thus, the viability of caprine preantral follicles can be best preserved after SSV in a mixture of sucrose and EG, followed by washes in medium containing sucrose.CAPES/Brazil supported this work. Regiane Rodrigues dos Santos is a recipient of a grant from CAPES/Brazil.  相似文献   

3.
《Reproductive biology》2021,21(4):100575
Cryopreservation and transplantation of ovarian tissue are proposed methods for the restoration of endocrine function and reproductive potential. Therefore, this study aimed to evaluate the effects of vitrification and xenotransplantation on follicle viability, activation, stromal cell integrity, vascularization, and micronuclei formation. Bovine fetal ovaries were fragmented and assigned to the following groups: Fresh control (FC), ovarian fragments immediately fixed; Vitrified control (VC), ovarian fragments vitrified; Vitrified xenotransplanted (VX), ovarian fragments vitrified and xenotransplanted; and Fresh xenotransplanted (FX), ovarian fragments xenotransplanted. Ovarian fragments were grafted in female BALB/c mice and recovered after 14 days. Follicular viability was preserved (P > 0.05) in VC group. The rate of developing follicles was greater (P < 0.05) in the FX group compared to other groups. Follicular density was higher (P < 0.05) in the VC group than the FC, VX, and FX groups. A decrease (P < 0.05) of stromal cell density was recorded after vitrification (VC vs. FX). Blood vessel density decreased in VC, VX, and FX groups compared with the FC group, and blood vessel density was correlated with follicular viability (positively; P = 0.07) and developing follicles (negatively; P < 0.001). Both vitrification and xenotransplantation groups (VC, VX, and FX) had a greater (P < 0.05) number of cells with one MN compared to the FC group. In summary, our findings showed that both vitrification and xenotransplantation modified blood vessel, follicular and stromal cell densities, follicular viability and activation, and micronuclei formation in ovarian tissue.  相似文献   

4.
《Cryobiology》2016,72(3):367-373
Cryopreservation of ovarian tissue has been studied for female germline preservation of farm animals and endangered mammalian species. However, there are relatively few reports on cryopreservation of fish ovarian tissue and especially using vitrification approach. Previous studies of our group has shown that the use of a metal container for the cryopreservation of bovine ovarian fragments results in good primordial and primary follicle morphological integrity after vitrification. The aim of this study was to assess the viability and in vitro development of zebrafish follicles after vitrification of fragmented or whole ovaries using the same metal container. In Experiment 1, we tested the follicular viability of five developmental stages following vitrification in four vitrification solutions using fluorescein diacetate and propidium iodide fluorescent probes. These results showed that the highest viability rates were obtained with immature follicles (Stage I) and VS1 (1.5 M methanol + 4.5 M propylene glycol). In Experiment 2, we used VS1 to vitrify different types of ovarian tissue (fragments or whole ovaries) in two different carriers (plastic cryotube or metal container). In this experiment, Stage I follicle survival was assessed following vitrification by vital staining after 24 h in vitro culture. Follicular morphology was analyzed by light microscopy after vitrification. Data showed that the immature follicles morphology was well preserved after cryopreservation. Follicular survival rate was higher (P < 0.05) in vitrified fragments, when compared to whole ovaries. There were no significant differences in follicular survival and growth when the two vitrification devices were compared.  相似文献   

5.
Our aim was to evaluate if loading prepubertal ovine oocyte with trehalose would impact on their further developmental potential in vitro and if it would improve their survival to vitrification procedures. COCs matured in vitro with (TRH) or without (CTR) 100mM trehalose were tested for developmental potential after in vitro fertilization and culture. Trehalose uptake was measured by the antrone spectrophotometric assay. No differences were recorded between the two experimental groups in fertilization rates (91.1 CTR vs 92.5% TRH), cleavage rates calculated on fertilized oocytes (96.1 CTR vs 95.4% TRH), first cleavage kinetic (56.1 CTR vs 51% TRH), and blastocyst rates (14.3 CTR vs 13.0% TRH). Anthrone assay revealed that in TRH group trehalose concentration/oocyte was 2.6microM. MII oocytes were then vitrified using cryoloops in TCM 199 containing 20% FCS, sucrose 0.5M, 16.5% Me(2)SO, 16.5% EG and plunged in LN(2). After warming, oocytes from TRH and CTR groups were tested for membrane integrity using the propidium iodide (PI)/Hoechst differential staining, and for developmental ability after in vitro fertilization. Trehalose in maturation medium affected membrane resistance (P<0.01) to vitrification/warming but not fertilization and cleavage rates. The differential staining showed a lower number of PI positive cells in TRH group compared to CTR one (14.3 vs 24.7%, respectively). Fertilization rates and cleavage rates did not differ between the two groups (55.3 and 41% for TRH and 47.7 and 41.7% for CTR, respectively). In conclusion trehalose in maturation medium stabilizes cell membranes during vitrification/warming of prepubertal ovine oocytes but does not affect fertilization and cleavage rates after warming.  相似文献   

6.
Cryopreservation-induced modifications of zona pellucida (ZP) have been explored to a lesser extent compared to other oocyte compartments. Different methods have been applied to identify ZP changes, but most of them are invasive and measure only few properties of ZP. Raman microspectroscopy (RMS) is a powerful technique for studying the molecular composition of cells but to date few studies have been performed on the oocytes using this method. The aim of the present study is to investigate the structural modifications of ZP of vitrified/warmed in vitro matured ovine oocytes by means of RMS. Cumulus-oocyte complexes were recovered from the ovaries of slaughtered adult sheep, matured in vitro and vitrified following the Minimum Essential Volume method using cryotops. ZPs of vitrified/warmed oocytes (VITRI), were exposed to vitrification solutions but not cryopreserved (CPA-exp) and untreated oocytes (CTR) were analyzed by RMS. We focused our analysis on the ZP protein and carbohydrate components by analyzing the 1230-1300 cm(-1) amide III region and the 1020-1140 cm(-1) spectral range in RMS spectra, respectively. The spectral profiles in the ranges of proteins and carbohydrates were comparable between CTR and CPA-exp ZPs, whereas VITRI ZPs showed a significantly altered protein secondary structure characterized by an increase in β-sheet content and a decrease in the α-helix content. A significant modification of the carbohydrate components was also observed. This study demonstrates that vitrification of ovine oocytes induces biochemical changes of ZP related to the secondary structure of proteins and carbohydrate residues. Cryoprotectants do not strongly alter the molecular composition of ZP which is affected mainly by cooling. Raman technology offers a powerful and non-invasive tool to assess molecular modifications induced by cryopreservation in oocytes.  相似文献   

7.
The vitrification procedure effects on molecular and cytoskeletal components and on developmental ability of in vitro matured prepubertal ovine oocytes were evaluated. MII oocytes were divided into three groups: (1) vitrified in cryoloops (VTR); (2) exposed to vitrification solutions and rehydrated without being plunged into liquid nitrogen (EXP); (3) without further treatment as a control (CTR). Two hours after treatment, membrane integrity, assessed by propidium iodide/Hoechst staining, was lower in VTR and EXP than in CTR (70.6%, 88.5% and 95.2%, respectively). Cleavage rate after fertilization was statistically different among all groups (21.4%, 45.4% and 82.8% for VTR, EXP and CTR groups respectively; P<0.01). Blastocyst rate in VTR (0.0%) and EXP (2.8%) groups was lower (P<0.01) than in CTR (22.8%). Maturation promoting factor activity was lower (P<0.01) in VTR and EXP groups compared with CTR at both 0 h (82.2%, 83.6% and 100%, respectively) and 2 h (60% and 53.9% and 100%, respectively) after warming. Immediately after warming VTR and EXP oocytes showed a lower rate of normal spindle and chromosome configuration compared to CTR (59.1%, 48.0% and 83.3%, respectively; P<0.01). After 2 h of culture in standard conditions the percentage of oocytes with normal spindle and chromosome organization decreased in both VTR and EXP groups compared to CTR (36.4%, 42.8% versus 87.5%, respectively). In conclusion the exposition to the tested cryoprotectant solution and the vitrification in cryoloops modified cytoskeletal components and alter biochemical pathways that compromise the developmental capacity of prepubertal in vitro matured ovine oocytes.  相似文献   

8.
The objective of the present study was to examine the effects of cumulus cells, cytochalasin B (CB), and taxol on the development of ovine matured oocyte following solid surface vitrification (SSV). In experiment 1, effects of cumulus cells during the vitrification were examined. Survival rates after warming were not different between ovine mature oocytes with cumulus cells and without cumulus cells. After in vitro fertilization, rates of embryonic cleavage and development to blastocyst were not different between these two groups. In experiment 2, the effects of cytochalasin B (CB) on vitrification of ovine matured oocytes were examined. The rates of survived ovine matured oocytes were not significantly different among the treatment with 0, 2.5, 5.0, 7.5 and 10.0 microg/mL CB. After in vitro fertilization, the rate of cleavage was not different between the five treatment groups. However, vitrified oocytes treated with 7.5 or 10.0 microg/mL CB resulted in a higher (8.1+/-4.6% and 7.8+/-2.4% respectively, P<0.05) blastocyst development rate than those of oocytes treated with lower CB concentrations. In Experiment 3, the effects of taxol on vitrification of ovine matured oocytes were examined. The rate of survived oocytes was not significantly different among the taxol treatment group with 0, 0.5, 1.0, and 5.0 microM taxol. After in vitro fertilization, the rates of embryos that reached cleavage were not different between the four treatment groups. However, vitrified oocytes treated with 0.5 microM taxol resulted in a higher blastocyst (10.1%+/-6.3, P<0.05) development rate compared to other treatment groups. In conclusion, no effect of cumulus cells on vitrification of ovine matured oocytes was detected in this study. Pretreatment of ovine matured oocytes with cytoskeletal inhibitor cytochalasin B or taxol have a positive effect and helps to reduce the damage induced by vitrification and is a potential way to improve the development of vitrified/warmed ovine matured oocytes.  相似文献   

9.
The aim of this study was to investigate the growth and survival rate of preantral follicles isolated from vitrified ovarian tissue by Cryotop and conventional methods. The ovaries of 14-day-old mice were separated and divided into four groups as following: Cryotop group, vitrified by Cryotop; CV (Conventional; CV) group, vitrified by conventional straw; toxicity test group and control group. After warming the vitrified ovaries, isolated preantral follicles from four groups were cultured for 4 days to compare survival rate and follicular growth between above-mentioned groups. Survival rate (97.3%) in toxicity test group alike the control group (98.7%) were significantly higher (P<0.05) than the Cryotop (92.7%) and CV (47.7%) groups. Increase in follicle diameters after 4 days in Cryotop and CV groups was significantly lower (P<0.05) than the control and toxicity test groups, but growth and survival rate of follicles in Cryotop group was significantly higher (P<0.05) than the CV group. These results demonstrated that ovarian tissue vitrification by Cryotop highly preserves the viability rate of preantral follicles.  相似文献   

10.
We evaluated the effect of three different cryodevices on membrane integrity, tubulin polymerization, maturation promoting factor (MPF) activity and developmental competence of in vitro matured (IVM) ovine oocytes. IVM oocytes were exposed during 3 min to 7.5% DMSO and 7.5% ethylene glycol (EG) in TCM199 and 25 sec to 0.5 M sucrose, 16.5% DMSO and 16.5% EG, loaded in open pulled straws (OPS), cryoloops (CL) or cryotops (CT) and immersed into liquid nitrogen. Untreated (CTR) or exposed to vitrification solutions but not cryopreserved (EXP) oocytes were used as controls. After warming, double fluorescent staining evidenced a lower membrane integrity in vitrified groups compared to the controls (P < 0.01). After in vitro fertilization and culture OPS and CL groups evidenced a lower cleavage rate than CT and controls (P < 0.01) while blastocysts were obtained only in CL and EXP, at a lower rate than CTR (P < 0.01). All vitrified groups showed alterations in spindle conformation, which were partially recovered in OPS and CT groups. MPF activity was lower in treated compared to CTR and CT showed the lowest value (P < 0.01). After 2 hr culture MPF activity was restored in all groups except CT. Parthenogenetic activation was higher in treated compared to CTR and CT evidenced the highest value. Our results indicate that cryodevice influences not only the ability to survive cryopreservation but is also associated with molecular alterations which affect developmental competence.  相似文献   

11.
Cryopreservation of immature oocytes at germinal vesicle (GV) stage would provide a readily available source of oocytes for use in research and allow experiments to be performed irrespective of seasonality or other constraints. This study was designed to evaluate the recovery, viability, maturation status, fertilization events and subsequent development of ovine oocytes vitrified at GV stage using solid surface vitrification (SSV). Cumulus oocyte complexes (COCs) obtained from mature ewes were randomly divided into three groups (1) SSV (oocytes were vitrified using SSV), (2) EXP (oocytes were exposed to vitrification and warming solutions without vitrification) or (3) Untreated (control). Following vitrification and warming, viable oocytes were matured in vitro for 24h. After that, nuclear maturation was evaluated using orcein staining. Matured oocytes were fertilized and cultured in vitro for 7days. Following SSV, 75.7% 143/189 oocytes were recovered. Of those oocytes recovered 74.8%, 107/143 were morphologically normal (viable). Frequencies of in vitro maturation were significantly (P<0.01) decreased in SSV and EXP groups as compared to control. In vitro fertilization rates were significantly (P<0.01) decreased in SSV (39.3%) group as compared to EXP (56.4%) and control (64.7%) groups. Cleavage at 48h post insemination (pi) and development to the blastocyst stage on day 7 pi were significantly (P<0.001) decreased in SSV oocytes as compared to EXP and control groups. In conclusion, immature ovine oocytes vitrified using SSV as a simple and rapid procedure can survive and subsequently be matured, fertilized and cultured in vitro up to the blastocyst stage, although the frequency of development is low.  相似文献   

12.
The cryopreservation of oocytes is an open problem as a result of their structural sensitivity to the freezing process. This study examined (i) the survival and meiotic competence of ovine oocytes vitrified at the GV stage with or without cumulus cells; (ii) the viability and functional status of cumulus cells after cryopreservation; (iii) the effect of cytochalasin B treatment before vitrification; (iv) chromatin and spindle organization; (v) the maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activity of vitrified oocytes after in vitro maturation. Sheep oocytes were vitrified at different times during in vitro maturation (0, 2, and 6 h) with (COCs) or without cumulus cells (DOs). After warming and in vitro maturation, oocytes denuded at 0 h culture showed a significantly higher survival and meiotic maturation rate compared to the other groups. Hoechst 33342/propidium iodide double staining of COCs and microinjection of Lucifer Yellow revealed extensive cumulus cell membrane damage and reduced oocyte-cumulus cell communications after vitrification. Cytochalasin B treatment of COCs before vitrification exerted a negative effect on oocyte survival. After in vitro maturation, the number of vitrified oocytes with abnormal spindle and chromatin configuration was significantly higher compared to control oocytes, independently of the presence or absence of cumulus cells. The removal of cumulus cells combined with vitrification significantly decreased the MPF and MAPK levels. This study provides evidence that the removal of cumulus cells before vitrification enhances oocyte survival and meiotic competence, while impairing the activity of important proteins that could affect the developmental competence of oocytes.  相似文献   

13.
The aim of this study was to compare the efficiency of different media for the in vitro culturing of fresh and vitrified bovine ovarian tissues. Fragments of the ovarian cortex were subjected to vitrification and histological and viability analyses or were immediately cultured in vitro using the alfa minimum essential medium, McCoy’s 5A medium (McCoy), or medium 199 (M199). Samples of different culture media were collected on days 1 (D1) and 5 (D5) for quantification of reactive oxygen species and for hormonal assays. In non-vitrified (i.e., fresh) ovarian tissue cultures, the percentage of morphologically normal follicles was significantly greater than that recorded for the other media (e.g., M199). In the case of previously vitrified tissues, the McCoy medium was significantly superior to the other media in preserving follicular morphology up until the last culture day (i.e., D5), thus maintaining a similar percentage from D1 to D5. Reactive oxygen species levels were higher in D1 vitrified cultured tissues, but there were no differences in the levels among the three media after 5 days. The hormonal assays showed that in the case of previously vitrified tissues, at D5, progesterone levels increased on culture in the M199 medium and estradiol levels increased on culture in the McCoy medium. In conclusion, our results indicate that the use of M199 would be recommended for fresh tissue cultures and of McCoy for vitrified tissue cultures.  相似文献   

14.
The objective of the present study was to assess the in vitro viability of ovine embryos at different stages of development after combining cell sampling and vitrification. Precompacted morulae, compacted morulae and blastocysts were obtained from superovulated Sarda ewes at 4, 5 or 6 d following insemination. Embryo cell biopsy was carried out in a 100-microl drop of PBS + 10% fetal calf serum (FCS) with 10 micromol nocodazole and 7.5 microg/ml cytochalasin-b by aspiration (3-5 cells). Embryos were cryopreserved at room temperature after exposure of 2 solutions for 5 min, transferred into a vitrification solution, loaded into the center of 0.25-ml straws separated by air bubbles from 2 columns of sucrose 0.5 M and plunged immediately into liquid nitrogen. In Experiment 1, the in vitro viability of manipulated or vitrified embryos after in vitro co-culture in TCM 199 medium with 10% FCS and sheep oviductal epithelial cells (SOEC) in 5% CO2 humidified atmosphere in air at 39 degrees C was significantly lower (P < 0.05 and P < 0.01, respectively) at precompacted morula (60 and 30%) and compacted morula (62 and 39%) stages than intact embryos at the same stages (87 and 88%). No differences were found at the blastocyst stage. In Experiment 2, the in vitro survival rate of precompacted morulae which were manipulated and immediately vitrified was lower (P < 0.05) than in those manipulated and, after a temporary period of culture, vitrified at blastocyst stage (21 vs 48%); while no differences were found at compacted morula and blastocyst stages. The results show that 1) the stage of development influences the subsequent in vitro viability of manipulated and vitrified ovine embryos, 2) temporary culture after manipulation and before vitrification improves the in vitro viability of embryos, and 3) the hole in the zona pellucida resulting from biopsy does not affect blastocyst survival after subsequent vitrification.  相似文献   

15.
This study evaluated the efficiency and toxicity of two cryopreservation methods, solid-surface vitrification (SSV) and cryoloop vitrification (CLV), on in vitro matured oocytes and in vivo derived early stage goat embryos. In the SSV method, oocytes were vitrified in a solution of 35% ethylene glycol (EG), 5% polyvinyl-pyrrolidone (PVP), and 0.4% trehalose. Microdrops containing the oocytes were cryopreserved by dropping them on a cold metal surface that was partially immersed in liquid nitrogen. In the cryoloop method, oocytes were transferred onto a film of the CLV solution (20% DMSO, 20% EG, 10mg/ml Ficoll and 0.65 M sucrose) suspended in the cryoloop. The cryoloop was then plunged into the liquid nitrogen. In vivo derived embryos were vitrified using the same procedures. The SSV microdrops were warmed in a solution of 0.3M trehalose and those vitrified with CLV were warmed with incubation in 0.25 and 0.125 M sucrose. Oocytes and embryos vitrified by the SSV method had a significantly lower survival rate than the control (60 and 39% versus 100%, respectively; P<0.05), while the survival rate of CLV oocytes and embryos (89 and 88%, respectively) did not differ from controls. Cleavage and blastocyst rates of the surviving vitrified oocytes (parthenogenetically activated) and embryos (cultured for 9 days) were not significantly different (P>0.05) from the control nor did they differ between vitrification methods. Embryos vitrified with the CLV method gave rise to blastocysts (2/15). Our data demonstrated that the two vitrification methods employed resulted in acceptable levels of survival and cleavage of goat oocytes and embryos.  相似文献   

16.
The purpose of this study was to assess the viability (rates of re-expanding and hatching in vitro), of in vitro derived ovine blastocysts using vitrification and warming/rehydration media containing fetal calf serum (20% FCS) or polyvinyl alcohol (0.1% PVA), and the incorporation of labelled methionine in protein synthesised during the first 4h after cryopreservation. In experiment 1, after 60 h culture in TCM-199 supplemented with 10% FCS, the hatching rates of blastocysts that had been vitrified, warmed, and rehydrated in media containing only PVA (p/p) were significantly (P<0.05) lower than those vitrified in medium containing PVA with warming and rehydration in medium containing FCS (p/s). Blastocysts that were vitrified in medium containing FCS and warmed and rehydrated in medium with PVA (s/p) had hatching rates that were significantly lower (P<0.01) than those vitrified, warmed, and rehydrated in media with only FCS (s/s). After warming, the number of dead cells in the p/p group was significantly (P<0.05) lower than in all other groups. In experiment 2, the [35S]methionine uptake by embryonic cells of the s/p group was significantly (P<0.01) higher than in other groups. The incorporation of labelled methionine into newly synthesised proteins was significantly lower in the p/p group (P<0.01) than in all other groups. No differences in the newly synthesised proteins were observed between groups. In conclusion, these results suggest that it is possible to replace serum with defined macromolecules in vitrification and warming/rehydration media for in vitro derived ovine blastocysts but this leads to a decrease in viability and a reduction in protein synthesis after warming.  相似文献   

17.
Vitrification affects fertilization ability and developmental competence of mammalian oocytes. This effect may be more closely associated with an intracellular calcium rise induced by cryoprotectants. The present study aimed to assess whether addition of Ethylene Glycol Tetraacetic acid (EGTA) to vitrification solution could improve quality and developmental competence of in vitro matured ovine oocytes. Vitrified groups were designed according to the presence or absence of EGTA and/or calcium in base media, including: mPB1+ (modified PBS with Ca2+), mPB1- (modified PBS without Ca2+), mPB1+/EGTA (mPB1+ containing EGTA), mPB1-/EGTA (mPB1- containing EGTA). In vitro development, numerical chromosome abnormalities, hardening of zona pellucida, mitochondrial distribution and function of viable oocytes were evaluated and compared between groups. Quality of blastocysts was assessed by differential and TUNEL staining. Also, mRNA expression levels of six candidate genes (KIF11, KIF2C, CENP-E, KIF20A, KIF4A and KIF2A), were quantitatively evaluated by RT-PCR. Our results showed that calcium-free vitrification and EGTA supplementation can significantly increase the percentage of normal haploid oocytes and maintain normal distribution and function of mitochondria in vitrified ovine oocytes, consequently improving developmental rate after in vitro fertilization. qRT-PCR analysis showed no significant difference in mRNA expression levels of kinesin genes between vitrified and fresh oocytes. Also, the presence of calcium in vitrification solution significantly increased zona hardening. In conclusion, we have shown for the first time that supplementation of vitrification solution with EGTA, as a calcium chelator, improved the ability of vitrified ovine oocytes to preserve mitochondrial distribution and function, as well as normal chromosome segregation.  相似文献   

18.
The aim of the present study was to analyse morphological variations in ovine spermatozoa subjected to different cryopreservation protocols using high resolution imaging techniques. Ejaculates were pooled and diluted in Tris-based extender. Aliquots containing 300 × 106 spz/ml were prepared and evaluated a) after the semen collection and pooling, b) after conventional freezing, c) after vitrification of samples maintained at room temperature (22 °C) prior to vitrification, and d) after vitrification of samples maintained at 5 °C prior to vitrification. Sperm motility, acrosome integrity, DNA fragmentation and morphology were assessed. Subcellular sperm changes were assessed and described by light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The maintenance of spermatozoa at 5 °C prior to vitrification and the use of 0.4 M sucrose pointed out lower dimensions of area, length and width than fresh, frozen and sperm maintained at 22 °C prior to vitrification. It was observed that the head width and length are significantly higher (P < 0.0001) in fresh spermatozoa than in the vitrified sperm samples. It could be hypothesized that greater intracellular fluid loss during vitrification could prevent damages in the spermatozoon throughout the reduced ice crystals formation, but mainly by the reduction of extracellular ice crystals due to the physical properties modification obtained when high concentrations of sugars are added. This is the first ultramicroscopic study carried out in ovine vitrified spermatozoa, which confirms the functional sperm alterations previously detected.  相似文献   

19.
Choi J  Lee JY  Lee E  Yoon BK  Bae D  Choi D 《Cryobiology》2007,54(1):55-62
The cryopreservation of ovarian tissue has been reported to affect the development of preantral follicles. However, the effect of cryopreservation of ovarian tissue on the development of primordial follicles remains to be elucidated. This study was conducted to evaluate the effect of cryopreservation on the development of frozen-thawed mouse primordial follicles. One-day-old mouse ovaries were cryopreserved by either slow-freezing or a vitrification method. The development of primordial follicles was evaluated histologically and also with markers for follicle development such as: GDF-9, inhibin-alpha subunit and ZP3 in fresh and frozen-thawed ovaries cultured for five days. The proportion of apoptotic and necrotic areas was analyzed in fresh and frozen-thawed ovaries at one and five days after culture, in order to examine the viability of ovarian cells that influence primordial follicle development. The development rate of primordial follicles was significantly lower in slow-frozen and vitrified ovaries than the fresh controls after five days of in vitro culture (P<0.05). The mRNA expression for all developmental markers was slightly decreased in the frozen-thawed ovaries; this difference was not significant. The proportion of apoptosis was significantly increased in the slow-frozen and vitrified ovaries compared to the fresh ovaries at one day (P<0.05); however, there was no difference at five days after culture. The proportion of the area of necrosis was significantly higher in slow-frozen and vitrified ovaries compared to the fresh ovaries at one and five days after culture (P<0.05). Our preliminary data suggest that ovarian tissue cryopreservation using slow-freezing and vitrification methods inhibits development of primordial follicles. This may be caused by the death of ovarian cells through apoptosis and necrosis after cryopreservation.  相似文献   

20.
Vitrification is considered a viable method for cryopreservation of ovarian tissue and selection of methods that minimize follicular damage is important. The objective of the present study was to evaluate the effects of two vitrification methods on ovarian tissue morphology, preantral follicles survival rate during in vitro culture, and relative expression of genes associated with oocyte maturation and cumulus expansion. Ovaries from 12-day-old mice were vitrified in media containing ethylene glycol, dimethyl sulphoxide, and sucrose. Before plunging in liquid nitrogen, ovaries were first loaded into an acupuncture needle (needle immersion vitrification [NIV]) or placed on a cold steel surface for 10 to 20 seconds (solid surface vitrification [SSV]). The integrity of the ovarian tissue was well-preserved after vitrification and was similar controls. Follicle viability in the SSV group was lower (P < 0.05) than in the control group after 6 days of culture and the NIV group after 10 day of culture. Follicle viability after 12 day of culture was 92.8%, 82.1%, and 58.4% in control, NIV, and SSV groups, respectively. Bmp15, Gdf9, BmprII, Alk6, Alk5, Has2, and Ptgs2 gene expression patterns were similar among groups. However, the level of gene expression in the vitrification groups during Days 6 to 10 were higher compared with the control group. In conclusion, ovarian tissue morphologic integrity was well-preserved, regardless of the vitrification method. Vitrification using the needle immersion method resulted in greater follicular survival after 12 day of culture than the SSV method. Gene expression patterns during culture did not seem to explain the reduced survival rate observed in the solid surface group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号