首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The genetics of the most common human pathogenic fungus Candida albicans has several unique characteristics. Most notably, C. albicans does not follow the universal genetic code, by translating the CUG codon into serine instead of leucine. Consequently, the use of Saccharomyces cerevisiae as a host for yeast two-hybrid experiments with C. albicans proteins is limited due to erroneous translation caused by the aberrant codon usage of C. albicans. To circumvent the need for heterologous expression and codon optimalization of C. albicans genes we constructed a two-hybrid system with C. albicans itself as the host with components that are compatible for use in this organism. The functionality of this two-hybrid system was shown by successful interaction assays with the protein pairs Kis1–Snf4 and Ino4-Ino2. We further confirmed interactions between components of the filamentation/mating MAP kinase pathway, including the unsuspected interaction between the MAP kinases Cek2 and Cek1. We conclude that this system can be used to enhance our knowledge of protein–protein interactions in C. albicans.  相似文献   

2.
In some species of Candida the CUG codon is encoded as serine and not leucine. In the case of the exo-beta-1,3-glucanase from the pathogenic fungus C. albicans there are two such translational events, one in the prepro-leader sequence and the other at residue 64. Overexpression of active mature enzyme in a yeast host indicated that these two positions are tolerant to substitution. By comparing the crystal structure of the recombinant protein with that of the native (presented here), it is seen how either serine or leucine can be accommodated at position 64. Examination of the relatively few solved protein structures from C. albicans indicates that other CUG encoded serines are also found at non-essential surface sites. However such codon usage is rare in C. albicans, in contrast to C. rugosa, with direct implications for respective recombinant protein production.  相似文献   

3.
M A Santos  V M Perreau    M F Tuite 《The EMBO journal》1996,15(18):5060-5068
The human pathogenic yeast Candida albicans and a number of other Candida species translate the standard leucine CUG codon as serine. This is the latest addition to an increasing number of alterations to the standard genetic code which invalidate the theory that the code is frozen and universal. The unexpected finding that some organisms evolved alternative genetic codes raises two important questions: how have these alternative codes evolved and what evolutionary advantages could they create to allow for their selection? To address these questions in the context of serine CUG translation in C.albicans, we have searched for unique structural features in seryl-tRNA(CAG), which translates the leucine CUG codon as serine, and attempted to reconstruct the early stages of this genetic code switch in the closely related yeast species Saccharomyces cerevisiae. We show that a purine at position 33 (G33) in the C.albicans Ser-tRNA(CAG) anticodon loop, which replaces a conserved pyrimidine found in all other tRNAs, is a key structural element in the reassignment of the CUG codon from leucine to serine in that it decreases the decoding efficiency of the tRNA, thereby allowing cells to survive low level serine CUG translation. Expression of this tRNA in S.cerevisiae induces the stress response which allows cells to acquire thermotolerance. We argue that acquisition of thermotolerance may represent a positive selection for this genetic code change by allowing yeasts to adapt to sudden changes in environmental conditions and therefore colonize new ecological niches.  相似文献   

4.
Plasmids containing derivatives of the Saccharomyces cerevisiae leucyl-tRNA (tRNA3 3 Leu ) gene that vary in anticodon sequence were constructed and transformed into the pathogen Candida albicans and S. cerevisiae. C. albicans could readily be transformed with plasmids encoding leucyl-tRNA genes with the anticodons CAA and UAA (recognizing the codons UUG and UUA) and expression of the heterologous tRNALeu could be demonstrated by Northern RNA blotting. In contrast, no transformants were obtained if the anticodons were UAG (codons recognized CUN, UUR) and CAG (codon CUG), indicating that the insertion of leucine at CUG codons is toxic for C. albicans. All tRNALeu-encoding plasmids transformed S. cerevisiae with equally high efficiencies. These results provide in vivo evidence that non-standard decoding of CUG codons is essential for the viability of C. albicans.  相似文献   

5.
Previous studies have shown that the yeast Candida albicans encodes a unique seryl-tRNA(CAG) that should decode the leucine codon CUG as serine. However, in vitro translation of several different CUG-containing mRNAs in the presence of this unusual seryl-tRNA(CAG) result in an apparent increase in the molecular weight of the encoded polypeptides as judged by SDS-PAGE even though the molecular weight of serine is lower than that of leucine. A possible explanation for this altered electrophoretic mobility is that the CUG codon is decoded as modified serine in vitro. To elucidate the nature of CUG decoding in vivo, a reporter system based on the C. albicans gene (RBP1) encoding rapamycin-binding protein (RBP), coupled to the promoter of the C. albicans TEF3 gene, was utilized. Sequencing and mass-spectrometry analysis of the recombinant RBP expressed in C. albicans demonstrated that the CUG codon was decoded exclusively as serine while the related CUU codon was translated as leucine. A database search revealed that 32 out of the 65 C. albicans gene sequences available have CUG codons in their open reading frames. The CUG-containing genes do not belong to any particular gene family. Thus the amino acid specified by the CUG codon has been reassigned within the mRNAs of C. albicans. We argue here that this unique genetic code change in cellular mRNAs cannot be explained by the 'Codon Reassignment Theory'.  相似文献   

6.
7.
Plasmids containing derivatives of the Saccharomyces cerevisiae leucyl-tRNA (tRNA3 3 Leu ) gene that vary in anticodon sequence were constructed and transformed into the pathogen Candida albicans and S. cerevisiae. C. albicans could readily be transformed with plasmids encoding leucyl-tRNA genes with the anticodons CAA and UAA (recognizing the codons UUG and UUA) and expression of the heterologous tRNALeu could be demonstrated by Northern RNA blotting. In contrast, no transformants were obtained if the anticodons were UAG (codons recognized CUN, UUR) and CAG (codon CUG), indicating that the insertion of leucine at CUG codons is toxic for C. albicans. All tRNALeu-encoding plasmids transformed S. cerevisiae with equally high efficiencies. These results provide in vivo evidence that non-standard decoding of CUG codons is essential for the viability of C. albicans.  相似文献   

8.
9.
Perception of external stimuli and generation of an appropriate response are crucial for host colonization by pathogens. In pathogenic fungi, mitogen activated protein kinase (MAPK) pathways regulate dimorphism, biofilm/mat formation, and virulence. Signaling mucins, characterized by a heavily glycosylated extracellular domain, a transmembrane domain, and a small cytoplasmic domain, are known to regulate various signaling pathways. In Candida albicans, the mucin Msb2 regulates the Cek1 MAPK pathway. We show here that Msb2 is localized to the yeast cell wall and is further enriched on hyphal surfaces. A msb2Δ/Δ strain formed normal hyphae but had biofilm defects. Cek1 (but not Mkc1) phosphorylation was absent in the msb2Δ/Δ mutant. The extracellular domain of Msb2 was shed in cells exposed to elevated temperature and carbon source limitation, concomitant with germination and Cek1 phosphorylation. Msb2 shedding occurred differentially in cells grown planktonically or on solid surfaces in the presence of cell wall and osmotic stressors. We further show that Msb2 shedding and Cek1 phosphorylation were inhibited by addition of Pepstatin A (PA), a selective inhibitor of aspartic proteases (Saps). Analysis of combinations of Sap protease mutants identified a sap8Δ/Δ mutant with reduced MAPK signaling along with defects in biofilm formation, thereby suggesting that Sap8 potentially serves as a major regulator of Msb2 processing. We further show that loss of either Msb2 (msb2Δ/Δ) or Sap8 (sap8Δ/Δ) resulted in higher C. albicans surface β-glucan exposure and msb2Δ/Δ showed attenuated virulence in a murine model of oral candidiasis. Thus, Sap-mediated proteolytic cleavage of Msb2 is required for activation of the Cek1 MAPK pathway in response to environmental cues including those that induce germination. Inhibition of Msb2 processing at the level of Saps may provide a means of attenuating MAPK signaling and reducing C. albicans virulence.  相似文献   

10.
Candida albicans, a dimorphic fungus, undergoes hyphal development in response to many different environmental cues, including growth in contact with a semi-solid matrix. C. albicans forms hyphae that invade agar when cells are embedded in or grown on the surface of agar, and the integral membrane protein Dfi1p is required for this activity. In addition, Dfi1p is required for full activation of mitogen activated protein kinase Cek1p during growth on agar. In this study, we identified a putative calmodulin binding motif in the C-terminal tail of Dfi1p. This region of Dfi1p bound to calmodulin in vitro, and mutations that affected this region affected both calmodulin binding in vitro and invasive filamentation when incorporated into the full length Dfi1p protein. Moreover, increasing intracellular calcium levels led to calcium-dependent, Dfi1p-dependent Cek1p activation. We propose that conformational changes in Dfi1p in response to environmental conditions encountered during growth allow the protein to bind calmodulin and initiate a signaling cascade that activates Cek1p.  相似文献   

11.
Several species of the genus Candida decode the standard leucine CUG codon as serine. This and other deviations from the standard genetic code in both nuclear and mitochondrial genomes invalidate the notion that the genetic code is frozen and universal and prompt the questions ‘why alternative genetic codes evolved and, more importantly, how can an organism survive a genetic code change?’ To address these two questions, we have attempted to reconstruct the early stages of Candida albicans CUG reassignment in the closely related yeast Saccharomyces cerevisiae. These studies suggest that this genetic code change was driven by selection using a molecular mechanism that requires CUG ambiguity. Such codon ambiguity induced a significant decrease in fitness, indicating that CUG reassignment can only be selected if it introduces an evolutionary edge to counteract the negative impact of ambiguity. We have shown that CUG ambiguity induces the expression of a novel set of stress proteins and triggers the general stress response, which, in turn, creates a competitive edge under stress conditions. In addition, CUG ambiguity in S. cerevisiae induces the expression of a number of novel phenotypes that mimic the natural resistance to stress characteristic of C. albicans. The identification of an evolutionary advantage created by CUG ambiguity is the first experimental evidence for a genetic code change driven by selection and suggests a novel role for codon reassignment in the adaptation to new ecological niches.  相似文献   

12.
O'Sullivan JM  Mihr MJ  Santos MA  Tuite MF 《Gene》2001,275(1):133-140
In a number of Candida species the 'universal' leucine codon CUG is decoded as serine. To help understand the evolution of such a codon reassignment we have analyzed the Candida albicans leucyl-tRNA synthetase (CaLeuRS) gene (CaCDC60). The predicted CaLeuRS sequence shows a significant level of amino acid identity to LeuRS from other organisms. A mitochondrial LeuRS (ScNAM2) homologue, which shared low identity with the CaLeuRS, was also identified in C. albicans. Antigenically-related LeuRSs were identified in a range of Candida species decoding the CUG codon as both serine and leucine, using an antibody raised against the N-terminal 15 amino acids of the CaLeuRS. Complementation experiments demonstrated that the CaLeuRS was able to functionally complement a Saccharomyces cerevisiae cdc60::kanMX null mutation. We conclude that there is no alteration in tRNA recognition and aminoacylation by the C. albicans LeuRS, which argues against it having a role in codon reassignment. The nucleotide sequences of the CaCDC60 and CaNAM2 genes were deposited at GenBank under Accession numbers AF293346 and AF352020, respectively.  相似文献   

13.
Alterations to the standard genetic code have been found in both prokaryotes and eukaryotes. This finding demolished the central dogma of molecular biology, postulated by Crick in 1968, of an immutable and universal genetic code, and raised the question of how organisms survive genetic code alterations. Recent studies suggest that genetic code alterations are driven by selection using a mechanism that requires translational ambiguity. In C. albicans, the leucine CUG codon is decoded as serine through structural alterations of the translational machinery, in particular, of Ser-tRNACAG, which has dual identity and novel decoding properties. Here, we review the molecular mechanism of CUG reassignment, focusing on the structural change of the translational machinery and on the impact that such alteration had on the evolution of the Candida albicans genome. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 4, pp. 634–639. The text was submitted by the authors in English.  相似文献   

14.
Mitogen-activated protein (MAP) kinases are pivotal components of eukaryotic signaling cascades. Phosphorylation of tyrosine and threonine residues activates MAP kinases, but either dual-specificity or monospecificity phosphatases can inactivate them. The Candida albicans CPP1 gene, a structural member of the VH1 family of dual- specificity phosphatases, was previously cloned by its ability to block the pheromone response MAP kinase cascade in Saccharomyces cerevisiae. Cpp1p inactivated mammalian MAP kinases in vitro and acted as a tyrosine-specific enzyme. In C. albicans a MAP kinase cascade can trigger the transition from the budding yeast form to a more invasive filamentous form. Disruption of the CPP1 gene in C. albicans derepressed the yeast to hyphal transition at ambient temperatures, on solid surfaces. A hyphal growth rate defect under physiological conditions in vitro was also observed and could explain a reduction in virulence associated with reduced fungal burden in the kidneys seen in a systemic mouse model. A hyper-hyphal pathway may thus have some detrimental effects on C. albicans cells. Disruption of the MAP kinase homologue CEK1 suppressed the morphological effects of the CPP1 disruption in C. albicans. The results presented here demonstrate the biological importance of a tyrosine phosphatase in cell-fate decisions and virulence in C. albicans.  相似文献   

15.
16.
A number of Candida species translate the standard leucine CUG codon as serine rather than as leucine. Such codon reassignment in nuclear-encoded mRNAs is unusual and raises a number of important questions about the origin of the genetic code and its continuing evolution. In particular we must establish how a codon can come to be reassigned without extinction of the species and what, if any, selective pressure drives such potentially catastrophic changes. Recent studies on the structure and identity of the novel CUG-decoding tRNASer from several different Candida species have begun to shed light on possible evolutionary mechanisms which could have facilitated such changes to the genetic code. These findings are reviewed here and a possible molecular mechanism proposed for how the standard leucine CUG codon could have become reassigned as a serine codon.  相似文献   

17.
Candida albicans cells have low levels of ergosterol when grown in ascorbic acid-supplemented media. When cells are grown in hydroquinone-supplemented media, the ergosterol levels became higher as compared to normal cells. The uptake of lysine, glycine, glutamic acid, proline, methionine and serine is reduced in hydroquinone-supplemented cells. In contrast to hydroquinone-supplemented cells, the rate and level of accumulation of these amino acids are higher in ascorbic acid-supplemented cells. Nystatin-resistant isolates of C. albicans with low ergosterol contents also exhibit an increased rate and level of accumulation of these amino acids. The uptake of phenylalanine and leucine remained unaffected by such a change in ergosterol levels brought about by different supplementation of the media. The results demonstrate a correlation between ergosterol levels and amino acids uptake. Contrary to various reports, the rate of K+ efflux does not seem to correlate with the amino acid uptake in C. albicans cells.  相似文献   

18.
Candida albicans CDC4 is nonessential and plays a role in suppressing filamentous growth, in contrast to its evolutionary counterparts involved in the G1-S transition of the cell cycle. Genetic epistasis analysis has indicated that proteins besides Sol1 are targets of C. albicans Cdc4. Moreover, no formal evidence suggests that C. albicans Cdc4 functions through the ubiquitin E3 ligase of the Skp1-Cul1/Cdc53-F-box complex. To elucidate the role of C. albicans CDC4, C. albicans Cdc4-associated proteins were sought by affinity purification. A 6×His epitope-tagged C. albicans Cdc4 expressed from Escherichia coli was used in affinity purifications with the cell lysate of C. albicans cdc4 homozygous null mutant. Candida albicans Cdc4 and its associated proteins were resolved by SDS-PAGE and visualized by silver staining. The candidate proteins were recovered and trypsin-digested to generate MALDI-TOF spectra profiles, which were used to search against those of known proteins in the database to reveal their identities. Two out of four proteins encoded by GPH1 and THR1 genes were further verified to interact with C. albicans Cdc4 using a yeast two-hybrid assay. We conclude that in vitro affinity purification using C. albicans Cdc4 generated from E. coli as the bait and proteins from cell lysate of C. albicans cdc4 homozygous null mutant as a source of prey permit the identification of novel proteins that physically interact and functionally associate with C. albicans Cdc4.  相似文献   

19.
We have generated more than 300 altered lac repressor proteins carrying known amino acid replacements, by employing nonsense mutations at 90 positions in the lacI gene together with eight different nonsense suppressors. This allows the substitution of lysine, serine, tyrosine, leucine and glutamine at virtually all of the respective positions in the repressor, and tryptophan at ten positions in the repressor. Since most of the nonsense sites have been correlated with specific codons in the lacI messenger RNA, in almost all cases the position of the substituted residue is known. This process results in the creation of a large number of mutant phenotypes. We have analyzed the effects of each substitution in vivo, and in several cases studied partially purified repressors in vitro. The properties of the altered proteins have been compared with the position and nature of each exchanged residue. We discuss the implications of these findings with regard to repressor structure in particular, and to protein structure in general. Further applications of the suppression method are also considered.  相似文献   

20.
Msb2 is a sensor protein in the plasma membrane of fungi. In the human fungal pathogen C. albicans Msb2 signals via the Cek1 MAP kinase pathway to maintain cell wall integrity and allow filamentous growth. Msb2 doubly epitope-tagged in its large extracellular and small cytoplasmic domain was efficiently cleaved during liquid and surface growth and the extracellular domain was almost quantitatively released into the growth medium. Msb2 cleavage was independent of proteases Sap9, Sap10 and Kex2. Secreted Msb2 was highly O-glycosylated by protein mannosyltransferases including Pmt1 resulting in an apparent molecular mass of >400 kDa. Deletion analyses revealed that the transmembrane region is required for Msb2 function, while the large N-terminal and the small cytoplasmic region function to downregulate Msb2 signaling or, respectively, allow its induction by tunicamycin. Purified extracellular Msb2 domain protected fungal and bacterial cells effectively from antimicrobial peptides (AMPs) histatin-5 and LL-37. AMP inactivation was not due to degradation but depended on the quantity and length of the Msb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histatin-5, suggesting that secreted rather than cell-associated Msb2 determines AMP protection. Thus, in addition to its sensor function Msb2 has a second activity because shedding of its glycofragment generates AMP quorum resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号