首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
A series of proteins putatively involved in the generation of axonal diversity was identified. Neurons from ventral spinal cord and dorsal root ganglia were grown in a compartmented cell-culture system which offers separate access to cell somas and axons. The proteins synthesized in the neuronal cell somas and subsequently transported into the axons were selectively analyzed by 2-dimensional gel electrophoresis. The patterns of axonal proteins were substantially less complex than those derived from the proteins of neuronal cell bodies. The structural and functional similarity of axons from different neurons was reflected in a high degree of similarity of the gel pattern of the axonal proteins from sensory ganglia and spinal cord neurons. Each axonal type, however, had several proteins that were markedly less abundant or absent in the other. These neuron-population enriched proteins may be involved in the implementation of neuronal diversity. One of the proteins enriched in dorsal root ganglia axons had previously been found to be expressed with decreased abundance when dorsal root ganglia axons were co-cultured with ventral spinal cord cells under conditions in which synapse formation occurs (P. Sonderegger, M. C. Fishman, M. Bokoum, H. C. Bauer, and P.G. Nelson, 1983, Science [Wash. DC], 221:1294-1297). This protein may be a candidate for a role in growth cone functions, specific for neuronal subsets, such as pathfinding and selective axon fasciculation or the initiation of specific synapses. The methodology presented is thus capable of demonstrating patterns of protein synthesis that distinguish different neuronal subsets. The accessibility of these proteins for structural and functional studies may contribute to the elucidation of neuron-specific functions at the molecular level.  相似文献   

6.
Mono-ADP-ribosylation is the enzymatic transfer of ADP-ribose from NAD(+) to acceptor proteins. It is catalysed by cellular ADP-ribosyltransferases and certain bacterial toxins. There are two subclasses of cellular enzymes: the ectoenzymes that modify targets such as integrins, defensin and other cell surface molecules; and the intracellular enzymes that act on proteins involved in cell signalling and metabolism, such as the beta-subunit of heterotrimeric G proteins, GRP78/BiP and elongation factor 2. The genes that encode the ectoenzymes have been cloned and their protein products are well characterized, yet little is known about the intracellular ADP-ribosyltransferases, which may be part of a novel protein family with an important role in regulating cell function. ADP-ribosylation usually leads to protein inactivation, providing a mechanism to inhibit protein functions in both physiological and pathological conditions.  相似文献   

7.
8.
Epidermal growth factor (EGF) is a peptide which effects the growth and/or differentiated functions of many cell types. Several pieces of evidence indicate that EGF and its receptor may play a role in carcinogenesis. Functional and structural characteristics of EGF and its receptor and their relationship to transforming proteins are discussed. EGF has extensive homology with alpha-transforming growth factor (alpha-TGF), which may actually be an embryonic form of EGF. Nevertheless, both EGF and alpha-TGF elicit transformation-associated phenotypes in target cells under certain conditions. EGF effects are mediated by a receptor present on the plasma membrane. The EGF receptor is a highly complex protein having several functions in addition to binding EGF in a highly specific manner. One of these functions is to phosphorylate tyrosyl residues on certain proteins. This activity is similar to that expressed by the src family of oncogene-encoded proteins. Besides sharing functional homology the EGF receptor also exhibits structural homology to several oncogene-encoded proteins. The v-erb-B-transforming protein has a striking extent of homology (95%) to the cytoplasmic portion of the EGF receptor. These data support the concept that some aspect of EGF-stimulated metabolism is involved in cellular transformation.  相似文献   

9.
10.
C-Mannosylation is a novel type of glycosylation in proteins. There are several examples of proteins in which the specific motif Trp-X-X-Trp is mannosylated at the first Trp to produce C-mannosylated Trp (CMW). Although C-mannosylation modifies Trp-X-X-Trp, predicted to be a functional motif of various integral proteins such as cytokine receptors, the physiological or pathological relevance of C-mannosylation in the cell is still not known. In this study, to characterize C-mannosylation in biological samples, we generated specific polyclonal antibodies against CMW by using a chemically synthesized CMW as an antigen. Using the antibody, we investigated the effect of hyperglycemic conditions on protein C-mannosylation in cultured cells and diabetic Zucker fatty rats. We found that protein C-mannosylation was increased in macrophage-like RAW264.7 cells under hyperglycemic conditions compared to low-glucose conditions. Furthermore, C-mannosylation was increased in the aortic vessel wall of Zucker fatty rats. Thrombospondin-1 was identified as a protein modified with C-mannosylation, and its expression was also increased in the aortic tissues of Zucker fatty rats. These results indicate that C-mannosylation is increased in specific tissues or cell types under hyperglycemic conditions, suggesting a pathological role for the increased C-mannosylation in the development of diabetic complications.  相似文献   

11.
Palcy S  Chevet E 《Proteomics》2006,6(20):5467-5480
To date, proteomics approaches have aimed to either identify novel proteins or change in protein expression/modification in various organisms under normal or disease conditions. One major aspect of functional proteomics is to identify protein biological properties in a given context, however, forward proteomics approaches alone cannot complete this goal. Indeed, with the increasing successes of such proteomics-based research strategies and the subsequent increasing amounts of proteins identified with unknown molecular functions, approaches allowing for systematic analyses of protein functions are desired. In this review, we propose to depict the complementarities of forward and reverse proteomics approaches in the definite understanding of protein functions. This dual strategy requires a data integration loop which allows for systematic characterization of protein function(s). The details of the integrative process combining both in silico and experimental resources and tools are presented. Altogether, we believe that the integration of forward and reverse proteomics approaches supported by bioinformatics will provide an efficient path towards systems biology.  相似文献   

12.
Ribosomal proteins (r-proteins) constitute a considerable part of the cell proteome. Although their primary role in the cell is to serve as integral components of protein synthesis machinery, ribosomes, many of them have functions beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with other cell components. Extraribosomal activities of some ribosomal proteins were observed as early as the 1970s–1980s. In recent years, both the list of moonlighting r-proteins and the repertoire of their additional functions beyond the ribosome was greatly expanded, mainly owing to new techniques developed for dissecting RNA/DNA-protein or protein-protein interactions within functional complexes involved in various cell processes. The review surveys information on the extraribosomal functions demonstrated experimentally or presumed for bacterial r-proteins.  相似文献   

13.
Savas S  Ahmad MF  Shariff M  Kim DY  Ozcelik H 《Proteins》2005,58(3):697-705
Nonsynonymous single nucleotide polymorphisms (nsSNPs) alter the encoded amino acid sequence, and are thus likely to affect the function of the proteins, and represent potential disease-modifiers. There is an enormous number of nsSNPs in the human population, and the major challenge lies in distinguishing the functionally significant and potentially disease-related ones from the rest. In this study, we analyzed the genetic variations that can alter the functions and the interactions of a group of cell cycle proteins (n = 60) and the proteins interacting with them (n = 26) using computational tools. As a result, we extracted 249 nsSNPs from 77 cell cycle proteins and their interaction partners from public SNP databases. Only 31 (12.4%) of the nsSNPs were validated. The majority (64.5%) of the validated SNPs were rare (minor allele frequencies < 5%). Evolutionary conservation analysis using the SIFT tool suggested that 16.1% of the validated nsSNPs may disrupt the protein function. In addition, 58% of the validated nsSNPs were located in functional protein domains/motifs, which together with the evolutionary conservation analysis enabled us to infer possible biological consequences of the nsSNPs in our set. Our study strongly suggests the presence of naturally occurring genetic variations in the cell cycle proteins that may affect their interactions and functions with possible roles in complex human diseases, such as cancer.  相似文献   

14.
E Ungewickell 《The EMBO journal》1985,4(13A):3385-3391
It is shown that in immunological, structural and functional terms the uncoating protein, which catalyses ATP-dependent dissociation of clathrin triskelia from clathrin-coated vesicles is intimately related to two major stress proteins of mammalian cells. These proteins of hitherto unknown functions have polypeptide mol. wts. of 73 kd and 72 kd, respectively. They are normal cell constituents which are synthesized in increased abundance under adverse environmental circumstances, such as non-physiological temperatures or treatment with amino acid analogues.  相似文献   

15.
Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.  相似文献   

16.
17.
蛋白质是有机生命体内不可或缺的化合物,在生命活动中发挥着多种重要作用,了解蛋白质的功能有助于医学和药物研发等领域的研究。此外,酶在绿色合成中的应用一直备受人们关注,但是由于酶的种类和功能多种多样,获取特定功能酶的成本高昂,限制了其进一步的应用。目前,蛋白质的具体功能主要通过实验表征确定,该方法实验工作繁琐且耗时耗力,同时,随着生物信息学和测序技术的高速发展,已测序得到的蛋白质序列数量远大于功能获得注释的序列数量,高效预测蛋白质功能变得至关重要。随着计算机技术的蓬勃发展,由数据驱动的机器学习方法已成为应对这些挑战的有效解决方案。本文对蛋白质功能及其注释方法以及机器学习的发展历程和操作流程进行了概述,聚焦于机器学习在酶功能预测领域的应用,对未来人工智能辅助蛋白质功能高效研究的发展方向提出了展望。  相似文献   

18.
19.
T Dinh  I T Paulsen    M H Saier  Jr 《Journal of bacteriology》1994,176(13):3825-3831
Seventeen fully sequenced and two partially sequenced extracytoplasmic proteins of purple, gram-negative bacteria constitute a homologous family termed the putative membrane fusion protein (MFP) family. Each such protein apparently functions in conjunction with a cytoplasmic membrane transporter of the ATP-binding cassette family, major facilitator superfamily, or heavy metal resistance/nodulation/cell division family to facilitate transport of proteins, peptides, drugs, or carbohydrates across the two membranes of the gram-negative bacterial cell envelope. Evidence suggests that at least some of these transport systems also function in conjunction with a distinct outer membrane protein. We report here that the phylogenies of these proteins correlate with the types of transport systems with which they function as well as with the natures of the substrates transported. Characterization of the MFPs with respect to secondary structure, average hydropathy, and average similarity provides circumstantial evidence as to how they may allow localized fusion of the two gram-negative bacterial cell membranes. The membrane fusion protein of simian virus 5 is shown to exhibit significant sequence similarity to representative bacterial MFPs.  相似文献   

20.
Peroxisomes, glyoxysomes and glycosomes are related organelles found in different organisms. The morphology and enzymic content of the different members of this organelle family differ considerably, and may also be highly dependent on the cell's environmental conditions or life cycle. However, all peroxisome-like organelles have in common a number of characteristic enzymes or enzyme systems, notably enzymes dealing with reactive oxygen species. All organelles of the family follow essentially the same route of biogenesis, but with species-specific differences. Sets of proteins called peroxins are involved in different aspects of the formation and proliferation of peroxisomes such as import of proteins in the organellar matrix, insertion of proteins in the membrane, etc. In different eukaryotic lineages these functions are carried out by often – but not always – homologous yet poorly conserved peroxins. The process of biogenesis and the nature of the proteins involved suggest that all members of the peroxisome family evolved from a single organelle in an ancestral eukaryotic cell. This original peroxisome was possibly derived from a cellular membrane system such as the endoplasmic reticulum. Most of the organism-specific functions of the extant organelles have been acquired later in evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号