首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Small heat-shock proteins (sHsps) are ubiquitous stress proteins with molecular chaperone activity. They share characteristic homology with the α-crystallin protein of the mammalian eye lens as well as being ATP-independent in their chaperone activity. We isolated a clone for a cytosolic class I sHsp,NtHSP17.6, fromNicotiana tabacum, and analyzed its functional mode for such activity. Following its transformation intoEscherichia coli and its over-expression, NtHSPI 7.6 was purified and examinedin vitro. This purified NtHSPI 7.6 exhibited typical chaperone activity in a light-scattering test. It was enable to protect a model substrate, firefly luciferase, from heat-induced aggregation. Non-denaturing PAGE showed that NtHSP17.6 formed a dodecamer in its native conformation, and was bound to its substrate under heat stress. A labeling test with bis-ANS indicated that this binding might be linked to newly exposed hydrophobic sites of the NtHSPI 7.6 complexes during heat shock. Based on these data, we suggest that NtHSP17.6 is a molecular chaperone that functions as a dodecamer in a heat-induced manner.  相似文献   

4.
Artemin acts as a molecular chaperone by protecting Artemia embryos undergoing encystment from damage, caused by heat or other forms of stress. According to the amino acid sequence alignment, although artemin shows a fair amount of homology with ferritin, it also contains an extra C-terminal. Analysis of the C-terminal extension of artemin model in previous studies has shown that there are some favorable interactions between this region and its surrounding cleft. In the current study we tried to investigate the role of this C-terminal in chaperone activity of artemin. This extra C-terminal (39 residues) was deleted and the truncated gene was cloned and expressed in Escherichia coli. According to in vivo chaperone-like activity studies, both full-length and C-terminal truncated artemin conferred thermotolerance on transfected E. coli cells. However, bacteria expressing truncated derivative of artemin was less resistant than those producing native artemin against heat. Moreover, the activity recovery on carbonic anhydrase (CA), as protein substrate, was less in the presence of truncated artemin than that of full-length artemin. The results demonstrated that C-terminal deletion decreases the ability of artemin for chaperone-like activity. Theoretical investigations showed that deletion of artemin C-terminal extension makes substantial structural alterations in a way that structural stability and overall integrity of artemin decrease.  相似文献   

5.
6.
We earlier documented the structural and functional characterization of PeIF5B factor from Pisum sativum that shows strong homology to the universal translation initiation factor eIF5B (Rasheedi et al., 2007, 2010 [12] and [13]). We now show that PeIF5B is an unusually thermo-stable protein resisting temperatures up to 95 °C. PeIF5B prevents thermal aggregation of heat labile proteins, such as citrate synthase (CS) and NdeI, under heat stress or chemical denaturation conditions and promotes their functional folding. It also prevents the aggregation of DTT induced insulin reduction. GTP appears to stimulate PeIF5B-mediated chaperone activity. In-vivo, PeIF5B over expression significantly enhances, the viability of Escherichia coli cells after heat stress (50 °C). These observations lead us to conclude that PeIF5B, in addition to its role in protein translation, has chaperone like activity and could be likely involved in protein folding and protection from stress.  相似文献   

7.
8.
《Journal of molecular biology》2019,431(6):1267-1283
SurA is a conserved ATP-independent periplasmic chaperone involved in the biogenesis of outer-membrane proteins (OMPs). Escherichia coli SurA has a core domain and two peptidylprolyl isomerase (PPIase) domains, the role(s) of which remain unresolved. Here we show that while SurA homologues in early proteobacteria typically contain one or no PPIase domains, the presence of two PPIase domains is common in SurA in later proteobacteria, implying an evolutionary advantage for this domain architecture. Bioinformatics analysis of > 350,000 OMP sequences showed that their length, hydrophobicity and aggregation propensity are similar across the proteobacterial classes, ruling out a simple correlation between SurA domain architecture and these properties of OMP sequences. To investigate the role of the PPIase domains in SurA activity, we deleted one or both PPIase domains from E. coli SurA and investigated the ability of the resulting proteins to bind and prevent the aggregation of tOmpA (19 kDa) and OmpT (33 kDa). The results show that wild-type SurA inhibits the aggregation of both OMPs, as do the cytoplasmic OMP chaperones trigger factor and SecB. However, while the ability of SurA to bind and prevent tOmpA aggregation does not depend on its PPIase domains, deletion of even a single PPIase domain ablates the ability of SurA to prevent OmpT aggregation. The results demonstrate that the core domain of SurA endows its generic chaperone ability, while the presence of PPIase domains enhances its chaperone activity for specific OMPs, suggesting one reason for the conservation of multiple PPIase domains in SurA in proteobacteria.  相似文献   

9.
Heat shock proteins (Hsps) are a class of molecular chaperones that play an essential role in preserving cellular functions under stressful conditions. The over production of recombinant proteins often causes cellular stress that results in aggregation/misfolding of proteins, which sometimes leads to the formation of inclusion bodies. Here we report the cloning and characterization of heat-inducible PgHsp70 from Pennisetum glaucum, a heat and drought tolerant plant that showed stability and chaperone activity at elevated temperatures. The predicted amino acid sequence of PgHsp70 revealed a high homology with Hsp70 from other plants, and the overall 3D structure homology modeling is similar to that of the constitutively expressed bovine cytosolic Heat Shock Cognate (HSC)-70. The purified recombinant protein had an apparent molecular mass of 70 kDa and displayed optimal chaperone activity at 50°C, and pH 8.0. Under these conditions, the T1/2 of PgHsp70 increased from 10 to 15 h in the presence of glycerol. The PgHsp70 exhibited a higher chaperone activity towards glutamate dehydrogenase than alcohol dehydrogenase. The expression of recombinant carbonic anhydrase (CA ) in E. coli in a catalytically active soluble form rather than in inclusion bodies was made feasible by co-expression of PgHsp70. Circular dichroism (CD) studies of the recombinant PgHsp70 did not reveal any discernible changes in the α-helix content, with increase in temperature from 35 to 85°C, thus suggesting a critical role of α-helix content in maintaining the chaperone activity.Key words: abiotic stress, carbonic anhydrase, chaperone, circular dichroism, heat shock proteins (Hsp70), Pennisetum glaucum, pH stable  相似文献   

10.
SgrS is a small RNA (sRNA) that requires the RNA chaperone Hfq for its function. SgrS is a unique dual-function sRNA with a base pairing function that regulates mRNA targets and an mRNA function that allows production of the 43-amino-acid protein SgrT. SgrS is expressed when non-metabolizable sugars accumulate intracellularly (glucose-phosphate stress) and is required to allow Escherichia coli cells to recover from stress. In this study, homologs of SgrS were used to complement an E. coli sgrS mutant in order elucidate the physiological relevance of differences among homologs. These analyses revealed that the base pairing function of E. coli and Yersinia pestis SgrS homologs is critical for rescue from glucose-phosphate stress. In contrast, base pairing-deficient SgrS homologs from Salmonella typhimurium, Erwinia carotovora and Klebsiella pneumoniae rescue E. coli cells from stress despite their failure to regulate target mRNAs. Compared with E. coli SgrS, S. typhimurium SgrS produces more SgrT and this rescues cell growth even when the base pairing function is inactivated. Genetic evidence suggests that a secondary structure in the E. coli SgrS 5′ region inhibits sgrT translation. This structure is not present in S. typhimurium SgrS, which explains its higher level of SgrT production.  相似文献   

11.
Mycobacterium tuberculosis heat shock protein 16.3 (MTB HSP 16.3) accumulates as the dominant protein in the latent stationary phase of tuberculosis infection. MTB HSP 16.3 displays several characteristics of small heat shock proteins (sHsps): its expression is increased in response to stress, it protects against protein aggregation in vitro, and it contains the core 'alpha-crystallin' domain found in all sHsps. In this study we characterized the chaperone activity of recombinant MTB HSP 16.3 in several different assays and compared the results to those obtained with recombinant human alphaB-crystallin, a well characterized member of the sHsp family. Recombinant MTB HSP 16.3 was expressed in Escherichia coli and purified to apparent homogeneity. Similar to alphaB-crystallin, MTB HSP16.3 suppressed citrate synthase aggregation and in the presence of 3.5 mm ATP the chaperone activity was enhanced by twofold. ATP stabilized MTB HSP 16.3 against proteolysis by chymotrypsin, and no effect was observed with ATPgammaS, a nonhydrolyzable analog of ATP. Increased expression of MTB HSP 16.3 resulted in protection against thermal killing in E. coli at 48 degrees C. While the sequence similarity between human alphaB-crystallin and MTB HSP 16.3 is only 18%, these results suggest that the functional similarities between these proteins containing the core 'alpha-crystallin' domain are much closer.  相似文献   

12.
Propionic acid (PA) is an economically important compound, but large-scale microbial production of PA confronts obstacle such as acid stress on microbial cells. Here, we show that overexpressing sigma factor RpoS improves the acid tolerance of Escherichia coli. Four genes including rpoS, fur, pgi and dnaK (encoding RNA polymerase sigma factor, ferric uptake regulator, phosphoglucoisomerase, and chaperone, respectively) were independently overexpressed in E. coli. The recombinant E. coli overexpressing rpoS showed the highest PA tolerance. This strain could grow in M9 medium at pH 4.62, whereas wild type E. coli survived only at pHs above 5.12. Moreover, in the shake-flask cultivation, the E. coli strain overexpressing rpoS grew faster than wild type. Notably, the minimum inhibitory concentration of PA for this recombinant strain was 7.81 mg/mL, which was 2-fold higher in comparison with wild type. Overall these results indicated that overexpression of sigma factor rpoS significantly enhanced E. coli tolerance to PA.  相似文献   

13.
14.
Small heat shock proteins (sHSPs), as ubiquitous molecular chaperones found in all forms of life, are known to be able to protect cells against stresses and suppress the aggregation of a variety of model substrate proteins under in vitro conditions. Nevertheless, it is poorly understood what natural substrate proteins are protected by sHSPs in living cells. Here, by using a genetically incorporated photo-cross-linker (p-benzoyl-l-phenylalanine), we identified a total of 95 and 54 natural substrate proteins of IbpB (an sHSP from Escherichia coli) in living cells with and without heat shock, respectively. Functional profiling of these proteins (110 in total) suggests that IbpB, although binding to a wide range of cellular proteins, has a remarkable substrate preference for translation-related proteins (e.g. ribosomal proteins and amino-acyl tRNA synthetases) and moderate preference for metabolic enzymes. Furthermore, these two classes of proteins were found to be more prone to aggregation and/or inactivation in cells lacking IbpB under stress conditions (e.g. heat shock). Together, our in vivo data offer novel insights into the chaperone function of IbpB, or sHSPs in general, and suggest that the preferential protection on the protein synthesis machine and metabolic enzymes may dominantly contribute to the well known protective effect of sHSPs on cell survival against stresses.  相似文献   

15.
Zhang Y  Liu X  Liu J 《FEBS letters》2005,579(13):2897-2900
α-Crystallin is one of the major protein components in mammalian lens fiber cells. It is composed of αA and αB subunits that have structural homology to the family of mammalian small heat shock proteins. Horwitz firstly characterized native α-crystallin as a molecular chaperone in vitro based on its ability to prevent heat-induced aggregation of lens proteins and enzymes. Andley et al. cloned and expressed human αA-crystallin in Escherichia coli and confirmed its chaperone activity by suppression of thermal aggregation and singlet oxygen-induced opacification. Although αA-crystallin acts as a chaperone protein, there is no report showing on its ability to protect enzymes against thermal inactivation. Here, we present data showing that αA-crystallin can prevent thermal inactivation of CpUDG that catalyzes uracil removal from DNAs.  相似文献   

16.
17.
In the standard method of transformation of Escherichia coli with extraneous DNA, cells are made competent for DNA uptake by incubating in ice-cold 100?mM CaCl2. Analysis of the whole protein profile of CaCl2-treated E. coli cells by the techniques of one- and two-dimensional gel electrophoresis, MALDI-MS and immunoprecipitation revealed overproduction of outer membrane proteins OmpC, OmpA and heat-shock protein GroEL. In parity, transformation efficiency of E. coli ompC mutant by plasmid pUC19 DNA was found to be about 40?% lower than that of the wild type strain. Moreover, in E. coli cells containing groEL-bearing plasmid, induction of GroEL caused simultaneous overproduction of OmpC. On the other hand, less OmpC was synthesized in E. coli groEL mutant compared to its wild type counterpart, by CaCl2-shock. From these results it can be suggested that in the process of CaCl2-mediated generation of competence, the heat-shock chaperone GroEL has specific role in DNA entry into the cell, possibly through the overproduced OmpC and OmpA porins.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号