首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
2.
Among the potential public health problems of animal production, infectious-contagious diseases stand out. Mastitis is among the main diseases affecting dairy cattle. One of the most promising options to reduce the problems caused by this disease, besides proper sanitary and management practices, is selective breeding of resistant animals. To shed light on the immune response mechanisms involved in the resistance/susceptibility phenotype to this disease, we quantified the relative expression of the genes IL-2, IL-6, IL-8, IL-12, IFN-γ, TNF-α, TLR-2, SEMA5A, and FEZL in cells of crossbreed dairy cows, divided into two groups, one healthy and the other suffering from clinical mastitis. Total RNA was extracted from the cells in the milk from the animals in each group (with and without clinical mastitis). Gene expression was determined using the real-time PCR method. The levels of gene expression were compared, and the cows with mastitis were found to express 2.5 times more TLR-2 than those free of mastitis (P < 0.05). There were no significant differences in the expression of the other genes.  相似文献   

3.
A total of 90 cows from three commercial farms were used to evaluate the relationship between subclinical mastitis and clinical mastitis and thermal nociceptive threshold. Milk strips from all udder quarters were tested for clinical mastitis with visual inspection of milk and udder alterations and for subclinical mastitis using California Mastitis Test. Milk yield was recorded, milk was sampled and further analyzed for somatic cells count (SCC). Cows were considered healthy when SCC<200 000 cells/ml and no visual alterations in milk and/or udder, with mild subclinical mastitis when SCC>200 000 cells/ml and no visual alterations in milk and/or udder, with moderate subclinical mastitis when SCC>500 000 cells/ml and no visual alterations in milk and/or udder and with clinical mastitis when visual alterations in milk and/or udder were detected. Nociceptive threshold was evaluated with the thermal threshold meter apparatus applied to the rear legs. Thermal threshold (TT) decreased when we compared healthy cows with cows presenting clinical mastitis and tended to decrease when we compare healthy cows with those with moderate subclinical mastitis. TT was lower at the ipsilateral rear leg compared with the contralateral leg to the infected mammary gland. TT linearly decreases as log10SCC increased and it showed sharp decrease as log10SCC exceed the value of 6.4. Increase in one unit of log10SCC increased the odds of low thermal threshold (lower than 55.8°C). Subclinical mastitis might be a welfare issue as it tended to decrease nociceptive thermal threshold.  相似文献   

4.
The milk samples from buffaloes of Murrah breed at mid lactation stage, reared at an organised dairy farm, were screened for subclinical mastitis based on bacteriological examination and somatic cell count following International Dairy Federation criteria. Milk samples from subclinical mastitis infected and healthy buffaloes were analysed to evaluate physicochemical alterations in terms of protein, fat, pH, electrical conductivity, chloride, minerals (sodium, potassium and calcium) and trace elements (iron, zinc, copper and selenium). In the present study, protein, fat, zinc, iron, calcium and selenium content was significantly lower (P < 0.001), while pH and electrical conductivity were significantly higher in mastitic milk as compared to normal milk. Concentration of electrolytes mainly sodium and chloride significantly increased with higher somatic cell count in mastitic milk and to maintain osmolality; potassium levels decreased proportionately. Correlation matrix revealed significantly positive interdependences of somatic cell count with pH, electrical conductivity, sodium and chloride. However, protein, fat, calcium and potassium were correlated negatively with elevated somatic cell count in mastitic milk. It is concluded that udder infections resulting in elevated somatic cells may alter the mineral and trace element profile of milk, and magnitude of changes may have diagnostic and prognostic value.  相似文献   

5.
Buffaloes are the second largest source of milk. Mastitis is a major impediment for milk production, but not much information is available about bubaline mastitis, especially subclinical mastitis. The aim of this study was to (a) investigate the application of various tests for the diagnosis of bubaline subclinical mastitis, (b) identify the major bacteria associated with it, and (c) evaluate the antibiotic resistance pattern of the bacteria. To this end, 190 quarter milk samples were collected from 57 domesticated dairy buffaloes from organized (64 samples) and unorganized (126 samples) sectors. Of these, 48.4%, 40.0%, 45.8%, 61.1%, and 61.6% were positive for subclinical mastitis by somatic cell count, electrical conductivity, California mastitis test, bromothymol blue test, and N-acetyl glucosaminidase test, respectively. As compared to the gold standard of somatic cell count, California mastitis test performed the best. However, a combination of the two methods was found to be the best option. Microbiological evaluation, both by biochemical methods as well as by monoplex and multiplex polymerase chain reaction, revealed that coagulase-negative staphylococci were the most predominant (64.8%) bacteria, followed by streptococci (18.1%), Escherichia coli (9.8%) and Staphylococcus aureus (7.3%). Most of the pathogens were resistant to multiple antibiotics, especially to β-lactam antibiotics. We propose that California mastitis test be combined with somatic cell count for diagnosis of subclinical mastitis in domestic dairy buffaloes. Further, our results reveal high resistance of the associated bacteria to the β-lactam class of antibiotics, and a possible major role of coagulase-negative staphylococci in causing the disease in India.  相似文献   

6.
In order to characterize the expression of genes associated with immune response mechanisms to mastitis, we quantified the relative expression of the IL-2, IL-4, IL-6, IL-8, IL-10, IFN-γ and TNF- α genes in milk cells of healthy cows and cows with clinical mastitis. Total RNA was extracted from milk cells of six Black and White Holstein (BW) cows and six Gyr cows, including three animals with and three without mastitis per breed. Gene expression was analyzed by real-time PCR. IL-10 gene expression was higher in the group of BW and Gyr cows with mastitis compared to animals free of infection from both breeds (p < 0.05). It was also higher in BW Holstein animals with clinical mastitis (p < 0.001), but it was not significant when Gyr cows with and without mastitis were compared (0.05 < p < 0.10). Among healthy cows, BW Holstein animals tended to present a higher expression of all genes studied, with a significant difference for the IL-2 and IFN- γ genes (p < 0.001). For animals with mastitis no significant difference in gene expression was observed between the two breeds. These findings suggest that animals with mastitis develop a preferentially cell-mediated immune response. Further studies including larger samples are necessary to better characterize the gene expression profile in cows with mastitis.  相似文献   

7.
Much emphasis has been put on evaluating alterations in milk composition caused by clinical and subclinical mastitis. However, little is known about changes in milk composition during subclinical mastitis in individual udder quarters with a low-to-moderate increase in milk somatic cell count (SCC). This information is needed to decide whether milk from individual udder quarters with a moderate-to-high increase in milk SCC should be separated or not. The aim of this study was to determine how milk composition in separate udder quarters is affected when cow composite milk has low or moderately increased SCC levels. Udder quarter and cow composite milk samples were collected from 17 cows on one occasion. Milk yield was registered and samples were analyzed for SCC, fat, total protein, whey proteins, lactose, citric acid, non-protein nitrogen (NPN), lactoferrin, protein profile, free fatty acids (FFAs), lactate dehydrogenase (LDH), proteolysis, sodium and potassium. Bacteriological samples were collected twice from all four quarters of all cows. The cows were divided into three groups depending on their SCC at udder quarter level. The first group comprised healthy cows with four udder quarters with low SCC, <50 000 cells/ml; composition was equal when opposite rear and front quarters were compared. In the second and the third groups, cows had one udder quarter with 101 000 cells/ml < SCC < 600 000 cells/ml and SCC > 700 000 cells/ml, respectively. The remaining udder quarters of these cows had low SCC (<100 000 cells/ml). Despite the relatively low average cow composite SCC = 100 000 cells/ml of Group 2, milk from affected udder quarters exhibited lower casein number, content of lactose and β-casein (β-CN), while the content of whey protein, sodium, LDH and α-lactoalbumin (α-la) were higher compared to healthy opposite quarters. In addition to these changes, milk from affected udder quarters in Group 3 also exhibited lower values of potassium and αs1-casein (αs1-CN) and higher values of lactoferrin when compared to milk from opposite healthy quarters. This indicates that even when the SCC in cow composite milk is low, there might exist individual quarters for which milk composition is changed and milk quality impaired.  相似文献   

8.
In 2010, a routine genetic evaluation on occurrence of clinical mastitis in three main dairy cattle breeds – Montbéliarde (MO), Normande (NO) and Holstein (HO) – was implemented in France. Records were clinical mastitis events reported by farmers to milk recording technicians and the analyzed trait was the binary variable describing the occurrence of a mastitis case within the first 150 days of the first three lactations. Genetic parameters of clinical mastitis were estimated for the three breeds. Low heritability estimates were found: between 2% and 4% depending on the breed. Despite its low heritability, the trait exhibits genetic variation so efficient genetic improvement is possible. Genetic correlations with other traits were estimated, showing large correlations (often>0.50, in absolute value) between clinical mastitis and somatic cell score (SCS), longevity and some udder traits. Correlation with milk yield was moderate and unfavorable (ρ=0.26 to 0.30). High milking speed was genetically associated with less mastitis in MO (ρ=−0.14) but with more mastitis in HO (ρ=0.18). A two-step approach was implemented for routine evaluation: first, a univariate evaluation based on a linear animal model with permanent environment effect led to pre-adjusted records (defined as records corrected for all non-genetic effects) and associated weights. These data were then combined with similar pre-adjusted records for others traits in a multiple trait BLUP animal model. The combined breeding values for clinical mastitis obtained are the official (published) ones. Mastitis estimated breeding values (EBV) were then combined with SCSs EBV into an udder health index, which receives a weight of 14.5% to 18.5% in the French total merit index (ISU) of the three breeds. Interbull genetic correlations for mastitis occurrence were very high (ρ=0.94) with Nordic countries, where much stricter recording systems exist reflecting a satisfactory quality of phenotypes as reported by the farmers. They were lower (around 0.80) with countries supplying SCS as a proxy for the international evaluation on clinical mastitis.  相似文献   

9.
Oppeltz RF  Rani M  Zhang Q  Schwacha MG 《Cytokine》2011,55(3):396-401
Burn is associated with profound inflammation and activation of the innate immune system in multiple organ beds, including the lung. Similarly, toll-like receptors (TLR) are associated with innate immune activation. Nonetheless, it is unclear what impact burn has on TLR-induced inflammatory responses in the lung.MethodsMale C57BL/6 mice were subjected to burn (3rd degree, 25% TBSA) or sham procedure and 1, 3 or 7 days thereafter, bronchoalveolar lavage (BAL) fluid was collected and cells were isolated and cultured in vitro with specific TLR agonists as follows: Zymosan (TLR-2), LPS (TLR-4) and CpG-ODN (TLR-9). Supernatants were collected 48 h later and assayed for inflammatory cytokine levels (IL-1β, IL-6, IL-10, IL-17, TNF-α, KC, MCP-1, MIP-1α, MIP-1β and RANTES) by Bioplex.ResultsBAL fluid from sham and burn mice did not contain detectable cytokine levels. BAL cells, irrespective of injury, were responsive to TLR-2 and TLR-4 activation. Seven days after burn, TLR-2 and TLR-4 mediated responses by BAL cells were enhanced as evidenced by increased production of IL-6, IL-17, TNF-α, MCP-1, MIP-1β and RANTES.ConclusionsBurn-induced changes in TLR-2 and TLR-4 reactivity may contribute to the development of post-burn complications, such as acute lung injury (ALI) and adult respiratory distress syndrome (ARDS).  相似文献   

10.

Raw milk samples were collected from 200 dairy cows belonging to Girolando 1/2, Gyr, Guzera, and Holstein breeds, and the bacterial diversity was explored using 16S rRNA amplicon sequencing. SCC analysis showed that 69 animals were classified as affected with subclinical mastitis. The milk bacterial microbiome was dominated by Firmicutes, Proteobacteria, and Actinobacteria, with an increase of Firmicutes in animals with subclinical mastitis and Proteobacteria in healthy animals. At the family and genus level, the milk bacterial microbiome was dominated by Staphylococcus, Acinetobacter, Pseudomonas, members of the family Enterobacteriaceae, Lactococcus, Aerococcus, members of the family Rhizobiaceae, Anaerobacillus, Streptococcus, members of the family Intrasporangiaceae, members of the family Planococcaceae, Corynebacterium, Nocardioides, and Chryseobacterium. Significant differences in alpha and beta diversity analysis suggest an effect of udder health status and breed on the composition of raw bovine milk microbiota. LEfSe analysis showed 45 and 51 discriminative taxonomic biomarkers associated with udder health status and with one of the four breeds respectively, suggesting an effect of subclinical mastitis and breed on the microbiota of milk in cattle.

  相似文献   

11.
Exposure to pathogen-associated molecular patterns such as LPS can cause an immune refractory state in mammals known as endotoxin tolerance (ET), resulting in a decreased inflammatory response after pathogen contact. This ET concept was used to reduce the severity of an experimentally-induced clinical mastitis. Cows were pretreated with 1?μg LPS per udder quarter and challenged 72?h (group L72EC) or 240?h (group L240EC) later with 500 CFU Escherichia coli. Pretreated animals showed no leukopenia after challenge, no (L72EC), or only slightly (L240EC), elevated body temperature and significantly reduced systemic and local clinical scores compared with cows that were not pretreated. Whereas an increase of milk somatic cell count after the E. coli challenge was abrogated in L72EC animals, it was significantly delayed in the L240EC group. In both pretreated groups the bacterial load in milk was markedly reduced. Based on the expression of inflammation-related genes in lobulo-alveolar mammary tissue, the tolerizing effect of LPS pretreatment is based on the inhibited up-regulation of inflammatory (TNF-α, IL-6, CXCL8, CCL20) and anti-inflammatory genes (IL-10, IRAK-M). These findings indicate that the concept of ET may be usefully applied as mastitis prophylaxis facilitating a rapid response to microbial infection and avoiding dysregulated inflammation.  相似文献   

12.
13.
14.
Type traits (TTs) can contribute to breeding animals with good economic traits such as production, longevity, fertility, and profitability. Dairy buffaloes are the second largest source of milk supply in the world, and their TTs should be taken into consideration in future dairy buffalo breeding programmes. However, the relationship between TTs and milk production traits in buffalo remains largely unknown. The study aimed to establish an early selection method for buffaloes with desirable milk performance by TTs. Using 1 908 records from 678 buffaloes, the relationship between TTs and milk production traits was analysed and the optimal growth curves of TTs related to milk production traits were constructed. We examined the correlations between 45 TTs (33 body structural, 12 udder and teat morphological traits) and three milk production traits (milk yield (MY), milk fat percentage (MF), and milk protein percentage (MP)). The results showed that the highest correlation was found between MY and udder circumference (r = 0.438), teat length (r = ?0.380) or heart girth (r = ?0.341). The teat distance and teat circumference exhibited a significant negative correlation with MF and MP. Rump length was the only trait that had a significant positive correlation with milk production traits, suggesting that milk performance could be comprehensively improved by including rump length in the selection procedure. Notably, we found that high milk production traits was obtained from the buffaloes with short teats (<6 cm), small heart girth (<200 cm), large udder circumference (>104 cm), long rump (>39 cm), and small distance between teats. Moreover, an early selection method for buffaloes with excellent milk performance was developed based on the non-linear models. Brody model exhibited the best fitting effect for heart girth and rump length, while the Logistic model displayed the best fitting effect for teat length. Our findings provide theoretical basis for the early selection of buffaloes with desirable milk performance.  相似文献   

15.

Background

During the past ten years many quantitative trait loci (QTL) affecting mastitis incidence and mastitis related traits like somatic cell score (SCS) were identified in cattle. However, little is known about the molecular architecture of QTL affecting mastitis susceptibility and the underlying physiological mechanisms and genes causing mastitis susceptibility. Here, a genome-wide expression analysis was conducted to analyze molecular mechanisms of mastitis susceptibility that are affected by a specific QTL for SCS on Bos taurus autosome 18 (BTA18). Thereby, some first insights were sought into the genetically determined mechanisms of mammary gland epithelial cells influencing the course of infection.

Methods

Primary bovine mammary gland epithelial cells (pbMEC) were sampled from the udder parenchyma of cows selected for high and low mastitis susceptibility by applying a marker-assisted selection strategy considering QTL and molecular marker information of a confirmed QTL for SCS in the telomeric region of BTA18. The cells were cultured and subsequently inoculated with heat-inactivated mastitis pathogens Escherichia coli and Staphylococcus aureus, respectively. After 1, 6 and 24 h, the cells were harvested and analyzed using the microarray expression chip technology to identify differences in mRNA expression profiles attributed to genetic predisposition, inoculation and cell culture.

Results

Comparative analysis of co-expression profiles clearly showed a faster and stronger response after pathogen challenge in pbMEC from less susceptible animals that inherited the favorable QTL allele ''Q'' than in pbMEC from more susceptible animals that inherited the unfavorable QTL allele ''q''. Furthermore, the results highlighted RELB as a functional and positional candidate gene and related non-canonical Nf-kappaB signaling as a functional mechanism affected by the QTL. However, in both groups, inoculation resulted in up-regulation of genes associated with the Ingenuity pathways ''dendritic cell maturation'' and ''acute phase response signaling'', whereas cell culture affected biological processes involved in ''cellular development''.

Conclusions

The results indicate that the complex expression profiling of pathogen challenged pbMEC sampled from cows inheriting alternative QTL alleles is suitable to study genetically determined molecular mechanisms of mastitis susceptibility in mammary epithelial cells in vitro and to highlight the most likely functional pathways and candidate genes underlying the QTL effect.  相似文献   

16.
Chemerin is an adipose tissue mediator involved in the regulation of many processes, including lipogenesis, inflammatory responses, etc. The role of chemerin in the development of insulin resistance still needs better understanding. The aim of the study was to investigate chemerin production in obese patients with different states of carbohydrate metabolism. The study included 155 patients with diagnosed obesity and 34 patients with overweight. The control group 1 consisted of 43 conditionally healthy donors without obesity. For comparison of the research data on evaluation of tissue-specific mRNA expression of the genes IL-6, TNF-α, RARRES2, (encoding IL-6, TNF-α, and chemerin, respectively) control group 2 consisting of 30 non-obese was also included into this study. The relative level of mRNA expression of the genes IL-6, TNF-α and RARRES2 (encoding IL-6, TNF-α and chemerin, respectively) was carried out using real time PCR. Concentrations of IL-6, TNF-α, and chemerin were measured in serum/plasma using an enzymelinked immunosorbent assay (ELISA). Significant differences were found in the plasma level of chemerin and tissue-specific patterns of RARRES2 gene expression in obese patients; these changes depended on the degree of obesity and the state of carbohydrate metabolism. Opposite associations between RARRES2 gene expression and expression TNF-α and IL-6 genes have been recognized in adipose tissues of different localization: in obese patients (BMI ≤ 40 kg/m2) without type 2 diabetes mellitus (DM2) they were negative, while in obese patients with DM2 diabetes they were positive. The recognized correlations between the plasma content of chemerin and the expression level of its gene in biopsies with various parameters of carbohydrate and lipid metabolism, and proinflammatory molecules indicate chemerin involvement in metabolic and immune processes in obesity.  相似文献   

17.
18.
Lactoferrin (LTF) is a milk glycoprotein favorably associated with the immune system of dairy cows. Somatic cell count is often used as an indicator of mastitis in dairy cows, but knowledge on the milk LTF content could aid in mastitis detection. An inexpensive, rapid and robust method to predict milk LTF is required. The aim of this study was to develop an equation to quantify the LTF content in bovine milk using mid-infrared (MIR) spectrometry. LTF was quantified by enzyme-linked immunosorbent assay (ELISA), and all milk samples were analyzed by MIR. After discarding samples with a coefficient of variation between 2 ELISA measurements of more than 5% and the spectral outliers, the calibration set consisted of 2499 samples from Belgium (n = 110), Ireland (n = 1658) and Scotland (n = 731). Six statistical methods were evaluated to develop the LTF equation. The best method yielded a cross-validation coefficient of determination for LTF of 0.71 and a cross-validation standard error of 50.55 mg/l of milk. An external validation was undertaken using an additional dataset containing 274 Walloon samples. The validation coefficient of determination was 0.60. To assess the usefulness of the MIR predicted LTF, four logistic regressions using somatic cell score (SCS) and MIR LTF were developed to predict the presence of mastitis. The dataset used to build the logistic regressions consisted of 275 mastitis records and 13 507 MIR data collected in 18 Walloon herds. The LTF and the interaction SCS × LTF effects were significant (P < 0.001 and P = 0.02, respectively). When only the predicted LTF was included in the model, the prediction of the presence of mastitis was not accurate despite a moderate correlation between SCS and LTF (r = 0.54). The specificity and the sensitivity of models were assessed using Walloon data (i.e. internal validation) and data collected from a research herd at the University of Wisconsin – Madison (i.e. 5886 Wisconsin MIR records related to 93 mastistis events – external validation). Model specificity was better when LTF was included in the regression along with SCS when compared with SCS alone. Correct classification of non-mastitis records was 95.44% and 92.05% from Wisconsin and Walloon data, respectively. The same conclusion was formulated from the Hosmer and Lemeshow test. In conclusion, this study confirms the possibility to quantify an LTF indicator from milk MIR spectra. It suggests the usefulness of this indicator associated to SCS to detect the presence of mastitis. Moreover, the knowledge of milk LTF could also improve the milk nutritional quality.  相似文献   

19.
A QTL affecting clinical mastitis and/or somatic cell score (SCS) has been reported previously on chromosome 9 from studies in 16 families from the Swedish Red and White (SRB), Finnish Ayrshire (FA) and Danish Red (DR) breeds. In order to refine the QTL location, 67 markers were genotyped over the whole chromosome in the 16 original families and 18 additional half-sib families. This enabled linkage disequilibrium information to be used in the analysis. Data were analysed by an approach that combines information from linkage and linkage disequilibrium, which allowed the QTL affecting clinical mastitis to be mapped to a small interval (<1 cM) between the markers BM4208 and INRA084 . This QTL showed a pleiotropic effect on SCS in the DR and SRB breeds. Haplotypes associated with variations in mastitis resistance were identified. The haplotypes were predictive in the general population and can be used in marker-assisted selection. Pleiotropic effects of the mastitis QTL were studied for three milk production traits and eight udder conformation traits. This QTL was also associated with yield traits in DR but not in FA or SRB. No QTL were found for udder conformation traits on chromosome 9.  相似文献   

20.
Genetic analysis for mastitis resistance was studied from two data sets. Firstly, risk factors for different mastitis traits, i.e. culling due to clinical or chronic mastitis and subclinical mastitis predicted from somatic cell count (SCC), were explored using data from 957 first lactation Lacaune ewes of an experimental INRA flock composed of two divergent lines for milk yield. Secondly, genetic parameters for SCC were estimated from 5 272 first lactation Lacaune ewes recorded among 38 flocks, using an animal model. In the experimental flock, the frequency of culling due to clinical mastitis (5%) was lower than that of subclinical mastitis (10%) predicted from SCC. Predicted subclinical mastitis was unfavourably associated with the milk yield level. Such an antagonism was not detected for clinical mastitis, which could result, to some extent, from its low frequency or from the limited amount of data. In practice, however, selection for mastitis resistance could be limited in a first approach to selection against subclinical mastitis using SCC. The heritability estimate of SCC was 0.15 for the lactation mean trait and varied from 0.04 to 0.12 from the first to the fifth test-day. The genetic correlation between lactation SCC and milk yield was slightly positive (0.15) but showed a strong evolution during lactation, i.e. from favourable (-0.48) to antagonistic (0.27). On a lactation basis, our results suggest that selection for mastitis resistance based on SCC is feasible. Patterns for genetic parameters within first lactation, however, require further confirmation and investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号