首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A database built from 95 experiments with 303 treatments was used to quantify the ruminal biohydrogenation (BH) of fatty acids (FA), efficiency of microbial protein synthesis (EMPS), duodenal flow and intestinal absorption of total FA and of FA with 12 to 18 C units, in response to variations in dietary FA content, source or technological treatment of fat supplement. Flows of FA were expressed relative to dry matter intake (DMI) to compile data from bovine and ovine species. BH tended to increase curvilinearly with FA intake, whereas dietary FA did not affect EMPS. A linear relationship between FA intake and duodenal flow of total FA was obtained, with a coefficient of 0.75 ± 0.06 g duodenal FA/kg DMI for each g FA intake/kg DMI. Between experiments, positive balances of total FA (intake - duodenum) were related to low EMPS. Relationships between duodenal flows of FA with 12 to 18 C units and their respective intakes were linear, with a coefficient that increased with the number of C units. Duodenal flow of bacterial FA was linearly related to FA intake (coefficient 0.33 ± 0.13), whereas contribution of bacterial lipid to duodenal flow decreased as FA intake increased. For each FA with 12 to 16 C units, prediction of FA absorption from its respective duodenal flow was linear. For total FA and FA with 18 C units, apparent absorption levelled off at high duodenal flows. All these relationships were discussed according to current knowledge on microbial metabolism in the rumen and on the intestinal digestibility of FA in the intestine.  相似文献   

2.
In ruminants, dietary lipids are extensively hydrogenated by rumen micro-organisms, and the extent of this biohydrogenation is a major determinant of long-chain fatty acid profiles of animal products (milk, meat). This paper reports on the duodenal flows of C18 fatty acids and their absorption in the small intestine, using a meta-analysis of a database of 77 experiments (294 treatments). We established equations for the prediction of duodenal flows of various 18-carbon (C18) fatty acids as a function of the intakes of their precursors and other dietary factors (source and/or technological treatment of dietary lipids). We also quantified the influence of several factors modifying rumen metabolism (pH, forage : concentrate ratio, level of intake, fish oil supplementation). We established equations for the apparent absorption of these fatty acids in the small intestine as a function of their duodenal flows. For all C18 unsaturated fatty acids, apparent absorption was a linear function of duodenal flow. For 18:0, apparent absorption levelled off for high duodenal flows. From this database, with fatty acid flows expressed in g/kg dry matter intake, we could not find any significant differences between animal categories (lactating cows, other cattle or sheep) in terms of rumen metabolism or intestinal absorption of C18 fatty acids.  相似文献   

3.
On the basis of the isomer-specific effects of trans fatty acids (FA) on human health, and the detrimental effect of t10,c12-conjugated linoleic acid (CLA) on cows' milk fat production, there is a need to identify factors that affect the shift from trans-11 to trans-10 pathway during ruminal biohydrogenation of FA. This experiment was conducted in vitro and aimed at separating the effects of the diet of the donor cows from those of the fermentative substrate, which is necessary to prevent this shift. A total of four dry Holstein dairy cows were used in a 4 × 4 Latin square design. They received 12 kg of dry matter per day of four diets based on maize silage during four successive periods: the control diet (22% starch, <3% fat); the high-starch diet, supplemented with wheat plus barley (35% starch, <3% crude fat); the sunflower oil diet, supplemented with 5% of sunflower oil (20% starch, 7.6% crude fat); and the high-starch plus oil diet (33% starch, 7.3% crude fat). Ruminal fluid of each donor cow was incubated for 5 h with four substrates having similar chemical composition to the diets, replacing sunflower oil by pure linoleic acid (LA). The efficiency of isomerisation of LA to CLA was the highest when rumen fluids from cows receiving dietary oil were incubated with added LA. The shift from trans-11 to trans-10 isomers was induced in vitro by high-starch diets and the addition of LA. Oil supplementation to the diet of the donor cows increased this shift. Conversely, the trans-10 isomer balance was always low when no LA was added to incubation cultures. These results showed that a large accumulation of trans-10 FA was only observed with an adapted microflora, as well as an addition of non-esterified LA to the incubation substrate.  相似文献   

4.
The effects of feeding Cistus ladanifer (Cistus) and a blend of soybean and linseed oil (1 : 2 vol/vol) on fatty acid (FA) composition of lamb meat lipids and messenger RNA (mRNA) expression of desaturase enzymes was assessed. In total, 54 male lambs were randomly assigned to 18 pens and to nine diets, resulting from the combination of three inclusion levels of Cistus (50 v. 100 v. 200 g/kg of dry matter (DM)) and three inclusion levels of oil (0 v. 40 v. 80 g/kg of DM). The forage-to-concentrate ratio of the diets was 1 : 1. Longissimus muscle lipids were extracted, fractionated into neutral (NL) and polar lipid (PL) and FA methyl esters obtained and analyzed by GLC. The expression of genes encoding Δ5, Δ6 and Δ9 desaturases (fatty acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2) and stearoyl CoA desaturase (SCD)) was determined. Intramuscular fat, NL and PL contents were not affected by oil or Cistus. Oil supplementation reduced (P<0.05) 16:0, c9-16:1, 17:0, c9-17:1 and c9-18:1 FA and increased (P<0.05) 18:2n-6, 18:3n-3 and the majority of biohydrogenation intermediates in NL. Cistus alone had few effects on FA of NL but interacted with oil (P<0.05) by increasing t10-18:1,t10,t12-18:2,t10,c12-18:2 and t7,c9-18:2. The t10-/t11-18:1 ratio increased with both Cistus and oil levels. The c9, t11-18:2 did not increase (P<0.05) with both oil and Cistus dietary inclusion. Oil reduced c9-16:1, 17:0, c9-17:1,c9-18:1, 20:4n-6, 22:4n-6 and 20:3n-9 proportions in PL, and increased 18:2n-6, 18:3n-3, 20:3n-3 and of most of the biohydrogenation intermediates. The Cistus had only minor effects on FA composition of PL. Cistus resulted in a reduction (P<0.05) of 20:5n-3 and 22:6n-3 in the meat PL. The expression level of SCD mRNA increased (P=0.015) with Cistus level, although a linear relationship with condensed tannins intake (P=0.11) could not be established. FADS1 mRNA expressed levels increased linearly (P=0.019) with condensed tannins intake. In summary, the inclusion of Cistus and oil in 1 : 1 forage-to-concentrate ratio diets resulted in a large increase in t10-18:1 and no increase in c9,t11-18:2 or n-3 long chain poor in polyunsaturated fatty acids in lamb meat.  相似文献   

5.
AIMS: To identify a ruminal isolate which transforms oleic, linoleic and linolenic acids to stearic acid and to identify transient intermediates formed during biohydrogenation. METHODS AND RESULTS: The stearic acid-forming bacterium, isolated from the rumen of a grazing cow, was a Gram-negative motile rod which utilized a range of growth substrates including starch and pectin but not cellulose or xylan. From its 16S rRNA gene sequence, the isolate was identified as a strain of Butyrivibrio hungatei. During conversion of linoleic acid, 9,11-conjugated linoleic acid formed as a transient intermediate before trans-vaccenic acid accumulated together with stearic acid. Unlike previously studied ruminal biohydrogenating bacteria, B. hungatei Su6 was able to convert alpha-linolenic acid to stearic acid. Linolenic acid was converted to stearic via conjugated linolenic acid, linoleic acid and trans-vaccenic acid as intermediates. Oleic acid and cis-vaccenic acid were converted to a series of trans monounsaturated isomers as well as stearic acid. An investigation of these isomers indicated that mixed trans positional isomers are intermediate in the biohydrogenation of cis monounsaturated fatty acids to stearic acid. CONCLUSION: This, the first rigorous identification and characterization of a ruminal bacterium which forms stearic acid, shows that B. hungatei plays an important role in unsaturated fatty acid transformations in the rumen. SIGNIFICANCE AND IMPACT OF THE STUDY: Biohydrogenating bacteria which convert C18 unsaturated fatty acids to stearic acid have not been available for study for many years. Access to B. hungatei Su6 now provides a fresh opportunity for understanding biohydrogenation mechanisms and rumen processes which lead to saturated fat in ruminant products.  相似文献   

6.
The fatty acid composition of sperm affects the fertilization rate. The objective was to investigate the effects of dietary fish oil (as a source of n-3 fatty acids) on semen quality and sperm fatty acid composition in sheep. Eight Zandi fat-tailed rams were randomly allocated into two groups and fed either a control diet or a diet supplemented with fish oil. Both diets were isocaloric and isonitrogenous and were fed for 13 weeks, starting in the middle of the breeding season. Semen samples were collected weekly and their characteristics evaluated by standard methods, whereas samples collected at the start and end of the study were assessed (gas chromatography) for sperm lipid composition. Mean (±s.e.m.) sperm concentrations (4.3 × 109 ± 1.3 × 108 v. 3.9 × 109 ± 1.3 × 108 sperm/ml and percentages of motile (77.25 ± 3.34 v. 60.8 ± 3.34) and progressively motile sperm (74.13 ± 1.69 v. 62.69 ± 1.69) were significantly higher in the fish oil group than control. Dietary fish oil increased the proportion of docosahexaenoic acid (DHA, C22:6 n-3) in sperm fatty acid composition. We concluded that feeding fish oil as a source of n-3 fatty acids attenuated seasonal declines in semen quality in rams, perhaps through increased DHA in sperm.  相似文献   

7.
Despite their major contribution to the energy supply of ruminants, the production of volatile fatty acids (VFA) in the rumen is still poorly predicted by rumen models. We have developed an empirical approach, based on the interpretation of large bibliographic databases gathering published in vivo measurements of ruminal VFA production rate (PR), rates of duodenal and faecal digestion and molar percentages of VFA in the rumen. These databases, covering a wide range of intake levels and dietary composition, were studied by meta-analysis using within-experiment models. We established models to quantify response laws of total VFA-PR and individual VFA molar percentages in the rumen to variations in intake level and dietary composition. The rumen fermentable organic matter (RfOM) intake, estimated from detailed knowledge of the chemical composition of diets according to INRA Feed Tables, appears as an accurate explanatory variable of measured total VFA-PR, with an average increment of 8.03 ± 0.64 mol total VFA/kg RfOM intake. Similar results were obtained when total VFA-PR was estimated from measured apparent RfOM (total VFA-PR/RfOM averaging 8.3 ± 1.2 mol/kg). The VFA molar percentages were related to dry matter intake and measured digestible organic matter (OM), digestible NDF and rumen starch digestibility, with root mean square error of 1.23, 1.45, 0.88 and 0.41 mol/100 mol total VFA for acetate, propionate, butyrate and minor VFA, respectively, with no effect of pH on the residuals. Stoichiometry coefficients were calculated from the slopes of the relationships between individual VFA production (estimated from measured apparent RfOM and individual VFA molar percentages) and measured fermented fractions. Coefficients averaged, respectively, 66, 17, 14 and 3 mol/100 mol for NDF; 41, 44, 12 and 4 mol/100 mol for starch; and 46, 35, 13 and 6 mol/100 mol for crude protein. Their use to predict VFA molar percentages appear relevant for most dietary conditions, that is, when the digested NDF/digested OM ratio exceeded 0.12. This study provides a quantitative review on VFA yield in the rumen. It contributes to the development of feed evaluation systems based on nutrient fluxes.  相似文献   

8.
Dietary supplementation with fish oil that contains omega-3 polyunsaturated fatty acids has been shown to enhance bone density as well as duodenal calcium uptake in rats. The latter process is supported by membrane ATPases. The present in vitro study was undertaken to test the effect of omega-3 fatty acids on ATPase activity in isolated basolateral membranes from rat duodenal enterocytes. Ca-ATPase in calmodulin-stripped membranes was activated in a biphasic manner by docosahexanoic acid (DHA) (10-30 microg/ml) but not by eicosapentanoic acid (EPA). This effect was blocked partially by 0.5 microM calphostin (a protein kinase C blocker). DHA inhibited Na,K-ATPase (-49% of basal activity, [DHA]=30 microg/ml, P <0.01). This effect could be reversed partially by 50 microM genistein, a tyrosine kinase blocker. EPA also inhibited Na,K-ATPase: (-47% of basal activity, [EPA]=30 microg/ml, P <0.01), this effect was partially reversed by 100 microM indomethacin, a cyclo-oxygenase blocker. Omega-3 fatty acids are thus involved in multiple signalling effects that effect ATPases in BLM.  相似文献   

9.
The lipid composition of two species of Serrasalmid fish with different natural feeding habits were compared in relation to the polyunsaturated fatty acids (PUFA) supplied in their diets. Mylossoma aureum , a herbivorous piranha, was maintained on oatmeal flakes in which : 2(n-6) and : 3(n-3) were the only PUFA and accounted for 40–8 and 1.2%, respectively of dietary fatty acids. Serrasalmus nattereri , the carnivorous red piranha, was fed mosquito larvae containing .0-33.4% of their total fatty acids as : 2(n-6)+18 : 3(n-3) and 4.9-8.5% as 20 : 4(n-6)+20 : 5(n-3). The two species had similar lipid class compositions in liver, brain, viscera and carcass, except that lipids from M. aureum were generally richer in triacylglycerols. In both species, visceral and carcass lipid contained high levels of triacylglycerols whose principal PUFA was : 2(n-6). In M. aureum the major PUFA in liver total lipid and triacylglycerols was : 2(n-6) whilst the major PUFA in liver phospholipids were : 4(n-6) and : 5(n-6), with : 6(n-3) being a minor component. The level of : 6(n-3) in ethanolamine glycerophospholipids was significantly greater in brain than liver of M. aureum. Although absent from dietary lipid, : 6(n-3) was the major PUFA in phosphatidylcholine and ethanolamine glycerophospholipids from both the liver and brain of S, nattereri . In both species, the ratio of (n-6)/(n-3)PUFA was consistently lower in tissue lipids than in dietary lipids. The results are consistent with (i) the herbivorous M. aureum converting dietary C18 PUFA to their C20 and C22 homologues, (ii) the carnivorous S, nattereri forming : 6(n-3) from either 18:3(n-3) or 20: 5(n-3) and (iii) both species selectively desaturating and elongating (n-3) rather than (n-6) PUFA.  相似文献   

10.
Although fat content in usual ruminant diets is very low, fat supplements can be given to farm ruminants to modulate rumen activity or the fatty acid (FA) profile of meat and milk. Unsaturated FAs, which are dominant in common fat sources for ruminants, have negative effects on microbial growth, especially protozoa and fibrolytic bacteria. In turn, the rumen microbiota detoxifies unsaturated FAs (UFAs) through a biohydrogenation (BH) process, transforming dietary UFAs with cis geometrical double‐bonds into mainly trans UFAs and, finally, into saturated FAs. Culture studies have provided a large amount of data regarding bacterial species and strains that are affected by UFAs or involved in lipolysis or BH, with a major focus on the Butyrivibrio genus. More recent data using molecular approaches to rumen microbiota extend and challenge these data, but further research will be necessary to improve our understanding of fat and rumen microbiota interactions.  相似文献   

11.
Butyrivibrio fibrisolvens is the most active bacterial species in the biohydrogenation of polyunsaturated fatty acids (PUFA) in the rumen. It needs to remove the unsaturated bonds in order to detoxify the PUFA to enable the growth of the bacterium. Here, we investigated the response of cell membrane-associated proteins in B. fibrisolvens to growth in the presence of PUFA. Numerous changes were observed in the cell membrane-associated proteome. One of the main modifications occurring when the 18:2 fatty acids, linoleic acid and conjugated linoleic acid, were added, was an increased expression of the molecular chaperone GroEL.  相似文献   

12.
A meta-analysis was conducted to evaluate the effects of protozoa concentration on methane emission from ruminants. A database was built from 59 publications reporting data from 76 in vivo experiments. The experiments included in the database recorded methane production and rumen protozoa concentration measured on the same groups of animals. Quantitative data such as diet chemical composition, rumen fermentation and microbial parameters, and qualitative information such as methane mitigation strategies were also collected. In the database, 31% of the experiments reported a concomitant reduction of both protozoa concentration and methane emission (g/kg dry matter intake). Nearly all of these experiments tested lipids as methane mitigation strategies. By contrast, 21% of the experiments reported a variation in methane emission without changes in protozoa numbers, indicating that methanogenesis is also regulated by other mechanisms not involving protozoa. Experiments that used chemical compounds as an antimethanogenic treatment belonged to this group. The relationship between methane emission and protozoa concentration was studied with a variance−covariance model, with experiment as a fixed effect. The experiments included in the analysis had a within-experiment variation of protozoa concentration higher than 5.3 log10 cells/ml corresponding to the average s.e.m. of the database for this variable. To detect potential interfering factors for the relationship, the influence of several qualitative and quantitative secondary factors was tested. This meta-analysis showed a significant linear relationship between methane emission and protozoa concentration: methane (g/kg dry matter intake)=−30.7+8.14×protozoa (log10 cells/ml) with 28 experiments (91 treatments), residual mean square error=1.94 and adjusted R2=0.90. The proportion of butyrate in the rumen positively influenced the least square means of this relationship.  相似文献   

13.
The effect of botanical diversity on supply of polyunsaturated fatty acids (PUFA) to ruminants in vitro, and the fatty acid (FA) composition of muscle in lambs was investigated. Six plant species, commonly grown as part of UK herbal ley mixtures (Trifolium pratense, Lotus corniculatus, Achillea millefolium, Centaurea nigra, Plantago lanceolata and Prunella vulgaris), were assessed for FA profile, and in vitro biohydrogenation of constituent PUFA, to estimate intestinal supply of PUFA available for absorption by ruminants. Modelling the in vitro data suggested that L. corniculatus and P. vulgaris had the greatest potential to increase 18:3n-3 supply to ruminants, having the highest amounts escaping in vitro biohydrogenation. Biodiverse pastures were established using the six selected species, under-sown in a perennial ryegrass-based sward. Lambs were grazed (~50 days) on biodiverse or control pastures and the effects on the FA composition of musculus longissimus thoracis (lean and subcutaneous fat) and musculus semimembranosus (lean) were determined. Biodiverse pasture increased 18:2n-6 and 18:3n-3 contents of m. semimembranosus (+14.8 and +7.2 mg/100 g tissue, respectively) and the subcutaneous fat of m. longissimus thoracis (+158 and +166 mg/100 g tissue, respectively) relative to feeding a perennial ryegrass pasture. However, there was no effect on total concentrations of saturated FA in the tissues studied. It was concluded that enhancing biodiversity had a positive impact on muscle FA profile reflected by increased levels of total PUFA.  相似文献   

14.
Spatial changes of FAs in the retina in response to different dietary n-3 formulations have never been explored, although a diet rich in EPA and DHA is recommended to protect the retina against the effects of aging. In this study, Wistar rats were fed for 8 weeks with balanced diet including either EPA-containing phospholipids (PLs), EPA-containing TGs, DHA-containing PLs, or DHA-containing TGs. Qualitative changes in FA composition of plasma, erythrocytes, and retina were evaluated by gas chromatography-flame ionization detector. Following the different dietary intakes, changes to the quantity and spatial organization of PC and PE species in retina were determined by LC coupled to MS/MS and MALDI coupled to MS imaging. The omega-3 content in the lipids of plasma and erythrocytes suggests that PLs as well as TGs are good omega-3 carriers for retina. However, a significant increase in DHA content in retina was observed, especially molecular species as di-DHA-containing PC and PE, as well as an increase in very long chain PUFAs (more than 28 carbons) following PL-EPA and TG-DHA diets only. All supplemented diets triggered spatial organization changes of DHA in the photoreceptor layer around the optic nerve. Taken together, these findings suggest that dietary omega-3 supplementation can modify the content of FAs in the rat retina.  相似文献   

15.
Meat from lambs finished with high-starch diets often contains low concentration of vaccenic (t11-18:1) and rumenic (c9,t11-18:2) acids and high concentration of t10-18:1. We hypothesized that replacing cereals by dehydrated citrus pulp (DCP) and the inclusion of tanniferous feed sources in oil supplemented diets might reduce the accumulation of t10-18:1 and increase the t11-18:1 and c9,t11-18:2 in lamb meat, without affecting the productive performance. In total, 32 lambs were assigned to four diets which combine two factors: basal diet (BD) (cereals v. DCP) and Cistus ladanifer (CL) (0 v. 150 g/kg dry matter). Feed intake, average daily weight gain and carcass traits were not affected by treatments, except for dressing percentage that was reduced with DCP (P=0.046). Both DCP and C. ladanifer reduced tenderness and juiciness of meat, and C. ladanifer also reduced (P<0.001) meat overall acceptability. Intramuscular fat and the concentration of saturated and polyunsaturated fatty acids (FA) were not affected (P>0.05) by diets. However, DCP increased the proportions of odd-chain FA (P=0.005) and several minor biohydrogenation (BH) intermediates in meat lipids. C. ladanifer had few effects on meat FA profile. The proportions of t11-18:1 and c9,t11-18:2 were high in all diets (5.4% and 1.5% of total FA, respectively) and were not influenced by the treatments. Basal diet and CL showed some significant interactions concerning FA composition of intramuscular fat. In diets without C. ladanifer, replacement of cereals by DCP increased the 18:0 (P<0.05) and decreased t10,c12-18:2 (P<0.05), t10-18:1 (P<0.10) and t10-/t11-18:1 ratio (P<0.10) with a large reduction of the individual variation for t10-18:1 and of t10-/t11-18:1 ratio. Combined with cereals, C. ladanifer increased 18:0 and reduced the BH intermediates in meat. Replacement of cereals by DCP seems to promote a more predictable FA profile in lamb meat, reducing the risk of t10-shifted BH pathways in the rumen.  相似文献   

16.
Optimizing milk production efficiency implies diets allowing low methane (CH4) emissions and high dairy performance. We hypothesize that nature of energy (starch v. lipids) and lipid supplement types (monounsaturated fatty acid (MUFA) v. polyunsaturated fatty acid (PUFA) mitigate CH4 emissions and can induce low milk fat content via different pathways. The main objective of this experiment was to study the effects of starch-rich or lipid-supplemented diets that induce milk fat depression (MFD) on rumen biohydrogenation (RBH) of unsaturated fatty acids (FA) and enteric CH4 emissions in dairy cows. Four multiparous lactating Holstein cows (days in milk=61±11 days) were used in a 4×4 Latin square design with four periods of 28 days. Four dietary treatments, three of which are likely to induce MFD, were based (dry matter basis) on 56% maize silage, 4% hay and 40% concentrates rich in: (1) saturated fatty acid (SFA) from Ca salts of palm oil (PALM); (2) starch from maize grain and wheat (MFD-Starch); (3) MUFA (cis-9 C18:1) from extruded rapeseeds (MFD-RS); and (4) PUFA (C18:2n-6) from extruded sunflower seeds (MFD-SF). Intake and milk production were measured daily. Milk composition and FA profile, CH4 emissions and total-tract digestibility were measured simultaneously when animals were in open-circuit respiration chambers. Fermentation parameters were analysed from rumen fluid samples taken before feeding. Dry matter intake, milk production, fat and protein contents, and CH4 emissions were similar among the four diets. We observed a higher milk SFA concentration with PALM and MFD-Starch, and lower milk MUFA and trans-10 C18:1 concentrations in comparison to MFD-RS and MFD-SF diets, while trans-11 C18:1 remained unchanged among diets. Milk total trans FA concentration was greater for MFD-SF than for PALM and MFD-Starch, with the value for MFD-RS being intermediate. Milk C18:3n-3 content was higher for MFD-RS than MFD-SF. The MFD seems more severe with MFD-SF and MFD-RS than PALM and MFD-Starch diets, because of a decrease in milk SFA concentration and a stronger shift from trans-11 C18:1 to trans-10 C18:1 in milk. The MFD-SF diet increased milk trans FA (+60%), trans-10 C18:1 (+31%), trans-10,cis-12 CLA (+27%) and PUFA (+36%) concentrations more than MFD-RS, which explains the numerically lowest milk fat yield and indicates that RBH pathways of PUFA differ between these two diets. Maize silage-based diets rich in starch or different unsaturated FA induced MFD with changes in milk FA profiles, but did not modify CH4 emissions.  相似文献   

17.
The growth response of a double-mutant fatty acid auxotroph of yeast Saccharomyces cerevisiae to exogenous saturated fatty acids of a homologous series from 12:0 to 16:0, each supplied with oleate, linoleate, linolenate, or cis11- eicosenoate, cannot be explained in terms of the efficiency of incorporation of the fatty acids into phospholipids or alteration of membrane fluidity. There is, however, a negative correlation between growth and levels of 12:0 plus 13:0 in phospholipids, as well as a positive correlation between growth and levels of 14:0, 1 5:0, and 1 6:0. We, therefore, conclude that the predominant factor in these phospholipid fatty acyl chain modifications is maintenance of an optimal concentration of C14:0 through C16:0 in phospholipids of this organism.  相似文献   

18.
Sterols, fatty acids and free amino acids of Helvella crispa and H. monachella were investigated. They contained traces of ergosterol and a high amount of ergosta 5.22-dien-3β-ol. Linoleic acid and l-Dopa are the most abundant fatty acid and free amino acid, respectively. The aqueous extract of H. monachella inhibits prostaglandin release by rat peritoneal leucocyres in vitro.  相似文献   

19.
To study the effect of feeding silages with different botanical composition, on rumen and lamb fat, 30 male lambs were assigned to five different silage groups for 11 weeks: botanically diverse silage (BDS); white clover silage (WCS); red clover silage (RCS), intensive English ryegrass silage (IRS) and crushed linseed and maize silage (MSL). Besides the silages, animals received organic wheat and barley and the MSL group additionally received bicarbonate (15 g/day). Silages were sampled when the bales were opened and analysed for fatty acid (FA) content and chemical composition. At slaughter, ruminal contents were sampled and 24 h after slaughter, longissimus muscle and subcutaneous (SC) fat were sampled. All samples were analysed for FA composition. The MSL group ingested the highest amount of FA (35.8 g/day v. 13.5, 19.4, 17.2 and 30.4 g/day for MSL v. BDS, WCS, RCS and IRS, respectively) and the sum of the major polyunsaturated FA, C18:2 n-6 and C18:3 n-3, was similar for groups BDS, WCS, RCS and MSL (61.3 g/100 g, 62.3 g/100 g, 62.3 g/100 g, 63.7 g/100 g of FA methylesters (FAME), respectively), while group IRS ingested higher proportions of these FA (74.5 g/100 g of FAME). Rumen data showed that animals fed BDS presented higher proportions of biohydrogenation intermediates, particularly C18:1 t11 and CLA c9t11, suggesting partial inhibition of rumen biohydrogenation. In the MSL group, the content of C18:3 n-3 in the rumen was highest, most probably due to reduced lipolysis and hence biohydrogenation through the combined effect of esterified C18:3 n-3 and seed protection. Additionally, C18:3 n-3 proportions were higher in rumen contents of RCS animals compared with WCS animals, which could be due to the activity of the polyphenol oxidase enzyme in the RC silages. Proportions of C18:3 n-3 were similar between treatments both for SC and intramuscular (IM) fat, whereas CLA c9t11 content was higher in the SC fat of BDS animals and lower in the IM fat of IRS animals compared with the other forage groups. No differences were found for C20:4 n-6, C20:5 n-3, C22:5 n-3 and C22:6 n-3 in the IM fat of the animals. Nevertheless, indices for desaturation and elongation activity in muscle of BDS animals suggest some stimulation of the first three steps of desaturation and elongation (Δ6-desaturase, elongase and Δ5-desaturase) of long-chain FA.  相似文献   

20.
Tuatara (Sphenodon) are rare reptiles endemic to New Zealand. Wild tuatara on Stephens Island (study population) prey on insects as well as the eggs and chicks of a small nesting seabird, the fairy prion (Pachyptila turtur). Tuatara in captivity (zoos) are fed diets containing different insects and lacking seabirds. We compared the fatty acid composition of major dietary items and plasma of wild and captive tuatara. Fairy prions (eaten by tuatara in the wild) were rich in C20 and C22 polyunsaturated fatty acids (PUFA), especially the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In contrast, items from the diet of captive tuatara contained no C20 and C22 PUFA and were higher in medium-chain and less unsaturated fatty acids. Plasma from wild tuatara was higher in n-3 PUFA [including alpha-linoleic acid (C18:3n-3), EPA and DHA], and generally lower in oleic acid (C18:1) and palmitic acid (C16:0), than plasma from captive tuatara in the various fractions (phospholipid, triacylglycerol, cholesterol ester and free fatty acids). Plasma from wild adult tuatara showed strong seasonal variation in fatty acid composition, reflecting seasonal consumption of fairy prions. Differences in the composition of diets and plasma between wild and captive tuatara may have consequences for growth and reproduction in captivity. Accepted: 3 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号